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ABSTRACT 

More and more, integral abutment bridges are being used in place 

of the more traditional bridge designs with expansion releases. In 

this study, states which use integral abutment bridges were surveyed 

to determine their current practice in the design of these structures. 

To study piles in integral abutment bridges, a finite element pro- 

gram for the soil-pile system was developed (1) with materially and 

geometrically nonlinear, two and three-dimensional beam elements and 

(2) with a nonlinear, Winkler soil model with vertical, horizontal, and 

pile tip springs. The model was verified by comparison to several 

analytical and experimental examples. 

A simplified design model for analyzing piles in integral abut- 

ment bridges is also presented. This model grew from previous analyti- 

c2l models and observations of pile behavior. The design model correctly 

describes the essential behavioral characteristics of the pile and 

conservatively predicts the vertical load-carrying capacity. 

Analytical examples are to illustrate the effects of 

lateral displacements on the ultimate load capacity of a pile. These 

examples include friction and end-bearing piles; steel, concrete, and 

timber piles; and bending about the weak, strong, and 4S0 axes for 

H piles. The effects of cyclic loading are shown for skewed and non- 

skewed bridges. The results show that the capacity of friction piles 

is not significantly affected by lateral displacements, but the 

capacity of end-bearing piles is reduced. Further results show that 

the longitudinal expansion of the bridge can introduce a vertical pre- 

load on the pile. 



1. INTRODUCTION 

Trad i t iona l ly ,  a system of expansion jo in t s ,  r o l l e r  supports, and 

other s t r u c t u r a l  re leases  has been provided on bridges t o  prevent 

damage caused by thermal expansion and contraction of the superstruc- 

t u r e  with annual temperature var ia t ions .  Expansion jo in t s  usually 

increase the  i n i t i a l  cos t  of a bridge and of ten do not function 

properly a f t e r  years of service  unless extensively maintained. Thus, 

i n t eg ra l  abutment bridges,  which have no expansion jo in t s ,  provide a 

design a l t e rna t ive  which po t en t i a l l y  o f fe rs  lower i n i t i a l  costs and 

lower maintenance costs .  However, s ince the p i l e s  i n  an i n t eg ra l  abut- 

ment bridge a r e  t h e  most f l ex ib l e  elements, they w i l l  be subjected t o  

l a t e r a l  movements a s  the  bridge expands and contracts .  Determining the  

maximum l a t e r a l  displacement t h a t  does not cause a reduction i n  the  

load-carrying capacity of the  p i l e s  ( i . e . ,  which does not a l t e r  the  

ex i s t i ng  methods for ,  designing the  p i l e s )  is of primary importance i n  

defining the  maximum safe  length for. i n t eg ra l  abutment bridges. Other 

f a c t o r s t o  be considered i n  determining the  allowable length fo r  in te -  

g r a l  abutment bridges include the  a x i a l  s t r e s se s  induced i n  the  super- 

s t ruc tu re  caused by the  p a r t i a l l y  res t ra ined displacements of the  abut- 

ments and the  e f f e c t s  of the  abutment movement on the  i n t e g r i t y  of the  

approach s lab  and f i l l . .  These two e f f e c t s  a r e  not considered fu r the r  

i n  t h i s  study. 

As p a r t  of t h i s  study, the  highway departments using i n t eg ra l  

abutment bridges were surveyed t o  determine current  design methods. 

Two ana ly t i ca l  methods were developed t o  analyze embedded p i l e s  with 



enforced horizontal displacements of the pile top: one based on a non- 

linear finite element model and the other on a simplified collapse 

model. The finite element model is compared to experimental results 

and the simplified model to the finite element model. Both analytical 

models can be used to predict the effect of integral abutment bridge 

movements on the pile capacity. Various analytical examples are pre- 

sented, representing skewed and nonskewed bridges. 



2. DESIGN OF INTEGRAL BRIDGE ABUTMENTS 

Responses to previous surveys concerning the use of integral abut- 

ments [2.1, 2.21 have indicated that most state highway departments 

have their own limitations and criteria in designing integral abutments. 

The bases of these limitations and criteria are shown to be primarily 

empirical. 

The use of integral abutments in bridge design has so far been 

accepted by 28 state highway departments and the District Construction 

Office of Federal Highway Administration (FHWA), Region 15. This chapter 

summarizes the current thinking and practice in integral abutment design 

by those state highway departments and the District Construction Office, 

as obtained from a survey made as part of this study. A copy of the 

survey questionnaire is shown in the Appendix (Chapter 10). 

Policies on several areas--integral abutment design, bridge move- 

ment, approach slabs, wingwall configurations and details, and general 

design details and guidelines--are discussed for the representative 

highway departments of Tennessee, New York, and California, as well as 

the FHWA. A summary on current practice by all the 28 states and the 

District Construction Office of FHWA, Region 15, is also given in the 

Appendix. 

2.1. General Policy on Integral Abutment Design 

2.1.1. Tennessee 

Structures must be designed to accommodate the movements and 

stresses caused by thermal expansion and contraction. Bridge designers 



should not accommodate these movements by using unnecessary bridge deck 

expansion joints and expansion bearings, because this solution creates 

more problems than it solves. Structural deterioration attributable to 

leaking expansion joints and frozen expansion bearings constitutes major 

bridge maintenance problems. 

To eliminate the problems associated with leaking expansion joints 

and frozen expansion bearings, Tennessee's policy is to design and 

construct bridges with continuous superstructures, fixed or integral 

bearings at the piers and abutments, and no bridge deck expansion joints 

unless absolutely necessary. When expansion joints are necessary, they 

will be provided only at abutments [2.3]. 

2.1.2. New York 

The New York Department of Transportation currently has tentative 

integral abutment guidelines that list the design parameters that must 

be satisfied by designers if they elect to use an integral abutment 

type structure. Integral abutments are allowed on structures with 

span lengthis: up to 300 ft, provided they satisfy the tentative guide- 

lines. Span lengths between 300 and 400 ft are approved on an indivi- 

dual basis. To date (March 1983) New York has not constructed any over 

300 ft. 

The main concern regarding span length is the longitudinal move- 

ment and the large passive pressures that are generated as the struc- 

ture expands against the compacted backfill. The general policy is to 

try to select a span arrangement and bearing types that result in 

approximately equal movements at each abutment. The 300-ft limitation 

results in movements that can safely be handled [2.4]. 



2.1.3. California 

The end diaphragm is treated as an integral part of the bridge 

superstructure. Frequently this diaphragm is extended below the soffit 

qf the sup&structure to rest directly on piles or on a footing. This 

type of support is then called an "end diaphragm abutment ." In California, 

an end diaphragm abutment may not be used where the roadway on the structure 

is designed to carry storm water 12.51. 

2.1.4. Federal Highway Administration 

The FHWA recommends that bridges with an overall length less than 

the following values should be constructed with continuous spans and, 

if unrestrained, have integral abutments. Greater values may be used 

when experience indicates such designs satisfactory 12.61. 

Steel. . . . . . . . . . . . . . . . . . . .  300ft 
Cast-in-place concrete (CIP) . . . . . . . . 500 ft 
Pre- or post-tensioned concrete. . . . . . . 600 ft 

2.2. Provision for Bridge Movement 

2.2.1. Tennessee 

The total superstructure movement should be based on the follow- 

ing design parameters: 

Structure Type Temp. Range Coef. of Exp. Total Movement 

Concrete 25' F - 95O F 0.0000060 0.505 in./100 ft 
Steel O0 F -120° F 0.0000065 0.936 in./100 ft 

The total movement per hundred feet is applicable to the structure 

length measured from the theoretical fixed center of the structure. 



When the total anticipated movement at an abutment is less than 

2 in. and the abutment is unrestrained against movement, no joint will 

be required and the superstructure and abutment beam will be constructed 

integrally. A construction joint shall be provided between the abutment 

backwall and the approach slab. (An unrestrained abutment is one that 

is free to rotate, such as a stub abutment on one row of piles or an 

abutment hinged at the footing with the axis of rotation being skewed 

between 60° and 90° to the direction of movement.) 

When the total anticipated movement at an abutment is less than 

1 / 4  in., the abutment may be constructed integrally with the super- 

structure regardless of the support conditions. 

When the total movement is more than 114 in. and the abutment is 

restrained against movement and rotation, an expansion joint will be 

required. 

When the total movement is greater than 1/4 in., the design 

drawings should show the total required movement for each joint and 

specify three proprietary strip seals for the contractor's selection. 

Alternate details may be submitted to the Engineer for approval 12.31 

2.2.2. New York 

Since the approach slabs are connected to the bridge slab, the 

distance from end-to-end of the approach slab shall be considered the 

length for an integral abutment structure. The following guidelines 

apply: 

1) Length 150 ft or less--no provision for expansion will be 

required. 



2) Length over 150 ft and up to 300 ft--provision shall be 

made for expansion at the end of the approach slab. If at 

all possible, the span arrangement and interior bearing selec- 

tion shall be such that approximately equal movements will 

occur at each abutment. 

3) Length over 300 ft and up to 400 ft--lengths in this range 

shall be approved on an individual basis. Provision for 

expansion shall be made at the end of each approach slab. 

4)  Lengths over 400 ft--not recommended at this time t2.71. 

2.2.3. California 

Thermal movements are easily absorbed by integral abutments. 

Abutments of conventionally reinforced, continuous concrete bridges of 

over 400 ft in length have shown no evidence of distress even though 

the end diaphragms were supported on piles. However, movement of the 

abutments from shrinkage and temperature changes results in an opening 

at the paving notch allowing intrusion of water. Prestressed struc- 

tures will amplify the intrusion problems because of the additional 

movement resulting from plastic shortening [ 2 . 5 ] .  

Movement of the abutments has caused maintenance problems attribut- 

able to settlement and erosion of the approach fill. Because of these 

problems, the use of the end diaphragm abutment shall be limited to the 

following values unless mitigating measures are used: 



Temp. Reinf . Precast CIP/ 
Range Steel Concrete Concrete Post Tension 

These data are based on a movement rating = 314 in. 

2.2.4. Federal Highway Administration 

Background. Thermal movements are predicted on the cold 

climate temperature ranges specified in the American Association 

of State Highway and Transportation Officials (AASHTO) bridge 

specifications, Article 1.2.15. State standards specifying 

other temperature ranges require adjustment of those values 

indicated [2.6]. 

1) For structural steel supported bridges, Article 1.2.15 

, specifies cold climate temperature range of 150' F with a 

thermal coefficient of 0.0000065, resulting in a total 

thermal movement of 1-1/4 in. (32 mm) of movement per 

100 ft (30.5 m) of structure. 

2) For concrete superstructures, AASHTO specifies a cold climate 

temperature range of 80° F, a thermal coefficient of 0.0000060 

and a shrinkage factor of 0.0002. However, this shrinkage 

effect can be reduced provided the normal construction 

sequence allows the initial shrinkage to occur prior 



to completion of the concrete operations. Based on an 

assumed shrinkage reduction of 50%, total allowance for 

thermal and shrinkage movement in a concrete structure 

would be approximately 3/4 in. (19 mm) per 100 ft (30.5 m). 

3) For prestressed concrete structures, a somewhat 

smaller total movement will occur once the prestressing 

shortening has taken place. Movement of 5/8 in. (15.9 mm) 

per 100 ft (30.5 m) of structure would be a reasonable value. 

This allows for thermal movement and assumes no effect from 

shrinkage and long-term creep. This value has been sub- 

stantiated in the field as reasonable for normal highway 

overcrossing structures. 

4) In long pre- or post-tensioned concrete structures, long- 

term creep may occur but is normally insignificant inso- 

far as provision for movement is concerned and, there- 

fore, has not been included in 3) above. 

5) The flexibility of individual substructure units will 

affect the distribution of the total movement between 

specified joints. 

Recommendations 

1) Cold climate conditions. Based on the above, consider 

adoption of Fig. 2.1 for determining the required provision 

for total movement under cold climate conditions. 



2) Moderate climate conditions. In  accordance with AASHTO 

Ar t i c l e  1.2.15 use temperature ranges of 120' F ( s t ee l )  and 

70° F (concrete) and a 20% reduction' of the  above vaiues. 

2.3. Approach Slab 

2.3.1. New York 

Approach s labs  should be 20-ft-long maximum and the  end of the  

approach s lab  s h a l l  be p a r a l l e l  t o  the  skew (30' maximum skew angle).  

A t i g h t  j o i n t  should be placed d i r e c t l y  over the  backwall between 

the  approach s lab  and bridge s lab.  This w i l l  provide a controlled 

crack locat ion r a the r  than allowing a random crack pa t te rn  t o  develop. 

Epoxy coated dowels s h a l l  pass through the  j o i n t  and sha l l  be located 

near the  bottom of the  s lab.  This w i l l  keep the  j o i n t  t i g h t  but s t i l l  

allow the  approach s lab  t o  s e t t l e  without causing tension cracking in  

the  top of the  s lab.  

There has been considerable discussion and no agreement on whether 

the  j o i n t  should be formed or  saw cut. A formed construction j o in t  

would provide pos i t ive  assurance t h a t  the  j o i n t  would wind up exactly 

where wanted and the  approach s l ab  would always be supported on the  

backwall. I n  many instances the  approach s l ab  i s  not a s  wide a s  the  

bridge s lab.  I n  those instances the  j o in t  i s  U-shaped and can be formed 

nea t ly  and ea s i l y .  The disadvantage t o  the  formed jo in t  is t h a t  it 

requires  the  approach s lab  t o  be poured separate  from the bridge s lab.  

However, a saw cu t  j o in t  would allow the  bridge s lab and approach 

s lab  t o  be ca s t  i n  a s i ng l e  operation. Some concern a r i s e s  a s  t o  how 



v i s ion  f o r  expansion' indicate t h a t  there  i s  a po ten t ia l  f o r  future  

maintenance a t  these j o in t s  12.71. 

2.3.2. Federal Highway Administration 

1)  Approach s labs  a r e  needed t o  span the  area immediately 

behind in t eg ra l  abutments t o  prevent t r a f f i c  compaction of 

mater ia l  where the  f i l l  i s  p a r t i a l l y  disturbed by abutment 

movement. The approach s lab  should be anchored with rein- 

forcing s t e e l  t o  the  superstructure and have a minimum span 

length equal t o  the  depth of abutment (1-to-1 slope from the  

bottom of t he  rear  face of the  abutment) plus  a 4 - f t  mini- 

mum s o i l  bearing area .  A p r ac t i ca l  minimum length of s lab  

would be 14 f t .  See Fig.  2.2 fo r  d e t a i l s  t2.61. 

2) The design of the  approach s lab should be based on the  

AASHTO Specif icat ions  f o r  Highway Bridges, Ar t ic le  1.3.2(3) 

Case B ,  where design span "S" equals s lab  length minus 2 f t .  

3) Posi t ive  anchorage of in tegra l  abutments t o  the  super- 

s t ruc tu re  i s  s t rongly recommended. 

4) North Dakota provides a roadway expansion j o i n t  50 f t  from 

the  end of the  bridge t o  iccammodate any pavement growth or  

bridge movement. This i s  considered desi rable .  

2.4. Wingwall Configurations and De ta i l s  

2.4.1. Tennessee 

This s t a t e  uses No. 4 bars f o r  6 - f t  t o  7 - f t  wingwalls, No. 5 bars 

f o r  7 - f t  t o  10-ft  wingwalls, and No. 6 bars fo r  10-f t  t o  12-f t  wingwalls. 



These values may be adjusted by individual design. For wingwall lengths 

greater than 12 ft, the designer will use a comprehensive analysis for 

each case [2.3]. 

2.4.2. New York 

Wingwalls shall be in-line or flared. U-walls will not be allowed. 

U-walls were eliminated because of design uncertainty, backfill compac- 

tion difficulty, and the additional design and details that have to be 

worked out for the joint between the wingwalls and approach slab. 

Wingwall lengths in excess of 10 ft should be avoided. Generally, 

the controlling design parameter is the horizontal bending in the wing- 

wall at the fascia stringer, which is caused by the large passive pres- 

sure behind the wingwalls. When the wingwalls are longer than 10 ft, 

areas of steel greater than No. 11 bars at 6 in. may be required. The 

10-ft dimension is a projected dimension and should be measured along a 

line perpendicular to the fascia stringer. Thus, flared wingwalls may 

be longer than 10 ft providing the projected length does not exceed 10 ft. 

Stem thickness shall be 2 ft minimum. Wingwalls may be tapered to 

less than 2 ft in order to reduce vertical dead load [2.7]. 

On structures that have been designed to date, the controlling 

design parameter has been horizontal bending in the wingwall at the 

fascia girder caused by the large passive pressure behind the abut- 

ment. Since it is not certain what the horizontal pressure will be, 

the state has elected to use the maximum pressures that were obtained 

in the testing conducted by South Dakota State University for the South 

Dakota Department of Highways back in 1973. In their testing program 

they jacked against the backfill in 114-in. increments and measured 



the corresponding passive pressures in the backfill material. To 

determine the horizontal pressure on the wingwall, the anticipated 

structure movement is calculated, and a corresponding passive pressure 

from South Dakota's test data is selected. This pressure is placed over 

the entire surface area of the abutment. Then the horizontal bending 

moment in the wingwalls caused by the passive pressure trying to bend 

the wingwalls about the fascia stringer is calculated [2.4]. 

2.5. General Design Details and Guidelines 

2.5.1. New York 

1) Foundation Type 

All integral abutments shall be supported on piles. Steel H 

or CIP piles may be used for structure lengths 150 ft or less. 

Only steel H piles shall be used for structure lengths over 

150 ft. All piles shall be in one single line and shall be 

oriented such that bending takes place about the weak axis of 

the pile. When steel H piles are used, the web of the pile 

shall be perpendicular to the center line of the stringer 

regardless of the skew. 

2) Construction 

0 Steel or prestressed concrete superstructures may be 

used. 

Only straight stringers will be allowed. A curved super- 

structure will be allowed providing the stringers are 

straight; Curved stringers are eliminated to guard 



against the possibility of flange buckling caused by the 

stringers trying to expand between the restraining abut- 

ments. 

Stringers shall be parallel to each other. The abutments 

shall also be parallel to each other. 

The maximum vertical curve gradient between abutments 

shall be 5%. 

Stage construction will not be allowed when integral 

abutments are used [2.7]. 

2.5.2. California 

1) Restraining Forces 

The values listed in Table 2.1 for resistance offered by 

various end conditions are applied at the base of the end 

diaphragm to determine the proper reinforcement. The values 

shown do not take into account the special situations where 

very long piles or small limber piles offer little resistance 

to longitudinal movement. 

2) Earthquake Forces 

Provide shear keys to resist transverse and longitudinal 

earthquake forces acting on the structure. These normally 

will be placed behind and at the ends of the abutment wall 

on narrow structures. On wide structures, additional keys 

may be located in the interior. One 1/2-in. expansion 

joint filler should be specified at the sides of all keys to 

minimize the danger of binding. 



3) Drainage 

e No pervious material collector or weep holes are 

required for flat slab bridges. 

o Continuous pervious backfill material collector and 

weep holes may be used for abutments in fills or well- 

drained cuts and at sites where a 5-ft-level berm is 

specified. 

End Slope Treatment Weep Hole Discharge 

Unprotected berm Directly on unprotected berm 

Full slope paving On spacer or groove in paved 
surface 

e Continuous permeable material and perforated steel pipe 

collector discharging into corrugated steel pipe over- 

side drains should be used for all other abutments. 

o Corrugated steel pipe overside drains must be coordinated 

with road plans. If there is no discharge system and no 

collector ditch, the outfall must be located away from 

the toe of slope to prevent erosion of the end slope. 

Abutment drainage systems should be coordinated with 

the slope paving. 

4) Backfill Placement 

Unless there are special soil conditions or unusual struc- 

ture geometrics, the designer need not specify the method or 

timing of backfill placement. Passive resistance of soil in 

front of the end diaphragm offers little restriction to 

structure movement due to stressing. Nor will the active 



pressure of backfill behind the end diaphragm materially 

alter the stress pattern even if the fill is completed at 

one abutment before being started at the other [2.5]. 

2.6. Summary and Conclusions 

Previous surveys concerning the use of integral abutments [2.1, 

2.21 have indicated that most state highway departments have their own 

limitations and criteria in designing integral abutments. The bases of 

these limitations and criteria are primarily empirical. Twenty-eight 

states and the District Construction Office of FHWA, Region 15, are known 

to use integral abutments. The current thinking and practice in integral 

abutment design by the 28 state highway departments and the District 

Construction Office of FHWA, Region 15, are summarized in Part 2 of the 

Appendix. 

Iowa, South Dakota, and FWA, Region 15, indicated that piling 

stresses due to lateral movement are calculated for integral abutment 

bridges. Alaska and Idaho indicated that such calculations are war- 

ranted only for integral abutment bridges that involve some unique 

feature. The remaining states neglected piling stresses due to lateral 

movement, although some states like California require some type of 

mitigating construction detail like driving the piles into predrilled 

holes. 

Construction details vary widely from state to state. Pile head 

fixity conditions may be of the hinge, fixed, or partially restrained 

type. Pile caps may or may not be used. Approach slabs are in some 



states tied to the abutment with dowels and move back and forth with 

the superstructure, while other states claim that an expansion joint 

between approach slab and bridge slab is needed to prevent possible 

maintenance problems. While granular material is the most widely used 

material as backfill, some states like New Mexico no longer use speci- 

fied backfill. Wingwalls may be in-line or flared. Some states like 

New York do not allow U-walls because of design uncertainty, backfill 

compaction difficulty, and the additional design and details that have 

to be worked out for the joint between the wingwalls and approach slab. 

New York recommends avoiding wingwall lengths in excess of 10 ft. 

Tennessee requires the designer to use comprehensive analysis if wing- 

wall lengths greater than 12 ft are to be used. 

The maximum allowable lengths for bridges with integral abutments 

used by the different states are summarized in the Appendix. The length 

limitations have been set for the most part on the basis of experience 

and engineering judgment. Many of the states have been progressively 

increasing length limitations over the past 30 years, primarily as a 

result of the observance of satisfactory performance in actual installa- 

tions. As of 1983, the length limitations for nonskewed integral 

abutment bridges had the following range: steel, 150 ft to 400 ft; 

concrete, 150 ft to 800 ft; prestressed concrete, 200 ft to 800 ft. 

Most states use the same length limitations for skewed integral abut- 

ment bridges. 



3. SOIL CHARACTERIZATION 

3.1. Introduction 

The soil characteristics in the soil-pile problem can be described 

by three types of soil resistance-displacement curves: lateral 

resistance-displacement (p-y) curves; longitudinal load-slip (f-z) 

curves; and pile tip load-settlement (q-z) curves. The p-y curves 

represent the relationship between the lateral soil pressure against 

the pile (force per unit length of pile) and the corresponding lateral 

pile displacement. The f-z curves describe the relationship between 

skin friction (force per unit length of pile) and the relative vertical 

displacement between the pile and the soil. The q-z curves describe 

the relationship between the bearing stress at the pile tip and the pile 

tip settlement. The total pile tip force is q times the effective pile 

tip area. Figure 3.1 shows a typical soil resistance-displacement curve. 

All three types of curves assume the soil behavior to be nonlinear and 

can be developed from basic soil parameters. 

The modified Ramberg-Osgood model (Sec. 3.2) will be used to 

approximate each of the three types of curves. The equations needed 

for calculating the constants used in this model are presented in 

Sec. 3.3 for lateral behavior and in Sec. 3.4 for vertical behavior. 

Numerical values for these constants are presented in Sec. 3.5 for six 

typical soils. 



3.2. Model Idealization 

3.2.1. Modified Ramberg-Osgood Model 

The modified Ramberg-Osgood model, as shown in Eq. (3.1) in the 

form of a p-y curve, will be used to approximate the p-y, f-z, and q-z 

soil resistance-displacement curves. 

in which 

kh = initial lateral stiffness 

p = generalized soil resistance 

pu = ultimate lateral soil resistance 

n = shape parameter 

y = generalized displacement 

This model offers certain advantages over the other models and also 

includes the commonly used hyperbola as a special case [3.1]. Nonlinear 

behavior models for symmetrical or periodic loadings have been presented 

by a number of workers [3.2-3.61. The constants needed in Eq. (3.1) 

can be determined from equations presented in Secs. 3.3 and 3.4. Fig- 

ure 3.2 shows the modified Ramberg-Osgood curve for a typical p-y curve. 

Similar equations for a typical f-z curve (using fmax, the maximum shear 



stress developed between the pile and soil, and kv, the initial vertical 

stiffness) or a typical q-z curve (using &ax, the maximnm bearing 

stress at the pile tip, and k the ,initial point stiffness) will be 
9' 

used.. Figure 3.3.shows the effect of the shape parameter n on the 

soil resistance-displacement behavior. 

3.2.2; Cyclic Model 

~ecause of annual temperature changes, a bridge superstructure 

undergoes expansion and contraction, which in turn causes the piles 

in integral abutment bridges to move back and forth. Thus, the modi- 

fied Ramberg-Osgood model must accommodate loading and unloading of 

the pile during cyclic loading. The nonlinear behavior characteristics 

of piles and soils can be expressed by the concept of stress versus 

strain and soil resistance versus displacement, respectively, as shown 

in Figs. 3.4 and 3.5. A modified Ramberg-Osgood cyclic model for both 

symmetrical and irregular cyclic loadings is proposed 

where 

and also 

PC = the soil resistance at the last reversal 

y = the soil displacement at the last reversal 
C 



The expression for the tangent modulus is obtained by differentiating 

Eq. (3.3) with respect to displacement y 

Figure 3.4 illustrates a typical example of this modified Ramberg- 

Osgood cyclic model. In this figure, hysteresis loops that appear to 

model the actual behavior of pile and soil quite well can then be 

readily constructed by adopting rules presented by Pyke [3.6]. These 

rules are stated as: 1) The tangent modulus on each loading reversal 

assumes a value equal to the initial tangent modulus for the initial 

loading curves, and 2) the shape of the unloading or reloading curves 

is the same as that of the initial loading curve, except that the scale 

is enlarged by a factor of c. This is indicated in Eq. (3.4) in which 

the first term is negative for unloading and positive for reloading; 

the maximum and minimum values of the stress or soil resistance are 

bounded by the ultimate (reference) stress or soil resistance. 

As part of the finite element model to be presented in Chapter 4, 

the Ramberg-Osgood cyclic model will be required to track through 

several loading and unloading cycles. The determination of reversal 

values for loading and unloading of each load increment is obtained by 

adopting the flow chart in Table 3.1 (also illustrated in Fig. 3.5). 



3 . 3 .  Lateral Behavior 

The lateral resistance-displacement (p-y) curves are developed 

using the modified Ramberg-Osgood model (Eq. 3 . 1 ) .  The parameters 

needed for the modified Ramberg-Osgood equation are the initial lateral 

stiffness kh, the ultimate lateral soil resistance pU, and a shape 

parameter n. These parameters can be obtained using the equations 

in Table 3 . 2  and the soil parameters in Table 3 . 3  [ 3 . 7 ,  3 .81 .  

For the design method to be developed in Chapter 5, the rather 

complicated variation of soil properties with depth will not be per- 

mitted. Simpler expressions for kh and pU are needed. For cohesive 

soils (clay), both kh and p will be assumed to have a constant value 
U 

for all depths [ 3 . 9 ,  3.101 

For cohesionless soils (sand), both kh and pU will be assumed to vary 

linearly with depth 13.7,  3.91 

The value nh is the constant of subgrade reaction. The other constants 

used in the above equations are defined in Table 3 . 3 .  



3 . 4 .  Vertical Behavior 

The load-slip (f-z) and pile tip load-settlement (q-z) curves are 

developed using the modified Ramberg-Osgood model (Eq. 3 . 1 ) .  The 

parameters needed for Eq. (3.1)  for the f-z curve are the initial verti- 

cal stiffness kv, the maximum shear stress f and the shape param- max ' 
eter n. These parameters can be obtained using Table 3.4  [3 .7 ,  3 . 9 ,  

3.121. The parameters needed for the modified Ramberg-Osgood equation 

for the q-z curve are the initial point stiffness k the maximum 
9' 

bearing stress %ax, and the shape parameter n. These parameters can 

be calculated from the equations in Table 3 . 5  [ 3 . 7 ,  3.81.  

The factor &! in Fig. 3.6 is used to obtain the soil/pile adhesion, 

given the soil cohesion. Various curves have been presented in the 

literature for this value [ 3 . 9 ] .  The curve in Fig. 3 . 6  is not the same 

as that used in previous work [ 3 . 7 ] .  The lower curve in Fig. 3 .6  is 

recommended for steel H piles over the one previously used [3 .12] .  

3 . 5 .  Typical Soils 

Soil properties and Ramberg-Osgood curve parameters are given for 

six typical soil types in Tables 3.6 to 3.11 [ 3 . 7 ] .  



4. THREE-DIMENSIONAL FINITE ELEMENT PILE MODEL 

4.1. Introduction 

A state-of-the-art mathematical model that can be used to .help 

evaluate the safety of piles in skewed bridges with integral abutments 

is described herein. ~orma'll~, for a skewed bridge with integral 

abutments subjected to a change in temperature, thermal movements 

caused by temperature changes in most cases include biaxial behavior 

in the pile. Thus, a three-dimensional behavior of soil-pile inter- 

action is to be considered for all components of the system, with 

compatibility and equilibrium enforced throughout. 

The mathematical model developed in this investigation was 

limited to defining the behavior of soil-pile interaction. A combina- 

tion of a one-dimensional idealization for thepiles (beam column) and 

an equivalent spring idealization for the soil, which includes vertical 

springs, lateral springs, and a point spring, are shown in Fig. 4.1. 

4.2. Three-dimensional Beam Finite Element 

Basically, two different approaches have been pursued in incremental, 

nonlinear finite element analysis. In the first, static and kinematic 

variables are referred to Eulerian (convected) coordinates in each 

load step (Fig. 4.2). This procedure is generally called the Eulerian, 

convected, or moving coordinate formulation. In this approach the 

geometry of the continua is updated, and the deformations are assumed 

to be infinitesimal; hence, the linear relations can be used. The 

incremental governing equations are obtained by applying the principle 



of virtual work or other equivalent theorems to the continuum using 

its configuration and stress at the previous step as the initial 

configuration and stress [4.1]. 

In the second approach, which is generally called the Lagrangian, 

stationary Lagrangian, or total Lagrangian formulation, all static and 

kinematic variables are referred to the original configuration 

(Fig. 4.2). The advantage of the total Lagrangian formulation is 

the ease with which it handles the boundary conditions and nonhomogenei- 

ties. For large displacement problems, the construction of shape func- 

tions for flexural problems is quite difficult and complex if the con- 

vergence conditions of the finite element method are to be met [4.1]. 

As the rotations become large, a component originally along the coordi- 

nate axis of the beam is no longer along that axis. Therefore, the 

assumed shape functions in the axial (linear) and transverse (cubic) 

directions are not compatible. This effect restricts the rotations to 

moderate values. 

An updated Lagrangian formulation, which reduces the efforts in 

computation for problems where the nonlinearities arise from material 

nonlinearity and finite displacement and rotation, is presented here 

[4.11. In the updated Lagranian formulation, the coordinates rotate 

and translate with the body but do not deform with it (Fig. 4.2). 

If the strains are small, this formulation linearizes the strain- 

displacement relations in terms of the deformation displacements rela- 

tive to the element moving chord. The large displacement effects are 

treated by transformations of displacement and force components between 

the Eulerian and updated Lagrangian coordinates. Strictly speaking, the 



updated Lagrangian formulation is a mixed procedure of the Eulerian and 

total Lagrangian formulations. 

Derivations of the beam-column element with geometrically and 

materially nonlinear stiffness equations have been presented by several 

investigators [4.2-4.201. A condensed description of this approach is 

given here to clarify the notation and approach used in the report. 

The following assumptions have been used in this derivation: 

The beam elements are assumed to be initially straight. 

Plane sections remain plane after deformation. 

0 The cross section of the beam is constant and has at least one 

plane of symmetry. 

0 Shear deformation is not considered. 

0 The effect of torsional deformation on normal strain is 

negligible (unrestrained warping). 

0 The beam-column element can undergo large rotations, but the 

deformation within each element from the chord is restricted 

to be small. 

4.2.1. Coordinate Systems 

In order to describe the system, three types of coordinate systems 

will be defined here: 

1) A fixed, global set of coordinates (X, Y, Z). 

2) Nodal coordinates (x, y, ;)--a set of nodal coordinates 
+ -3 -3 

associated with each node that coincides with bl, b2, and b3 

(the orthogonal base vectors), respectively, for each node. 
+ 

The initial orientations of the vectors bi are chosen to 



coincide with the principal directions of the cross section, 

and since the vectors rotate with the node, they remain 

aligned with the principal directions. 

3)  Element or local coordinates (x, y, 2)--a set of element 

coordinates associated with each element. The element 

coordinates rotate and translate with the end points of the 

element. The x, y, and z axes are associated with the 
+ -3 + 

orthogonal base unit vectors e e and e respectively, 1, 2 '  3' 

for each element. These are the updated Lagrangian coordinates 

described in the introduction to this chapter and illustrated 

in Fig. 4.2.  

These coordinate systems are illustrated in Pig. 4.3. The unit 

-f + 
vectors b. and e. immediately define the rotational transformation for 

1 1 

any vector components between the coordinate systems. Thus, for a 

-+ 
vector V with global components (VX, Vy, V ), nodal coordinate com- z 
ponents (V- V- V-), and element coordinate components (v~, V VZ), x' y' z Y' 

the transformation between global and nodal components is given by 

where 2' i, m' i' and n! are the global components of the nodal base vector 
1 

. Similarly 



Because of the orthogonality of the transformation matrices, their 

inverse is equal to the transpose, so 

4.2.2. Strain-Displacement and Deformation Displacements 

In the updated Lagrangian formulation, displacements are subdivided 

into rigid body displacements, which cause no strains, and deformation 

displacements. The rigid body displacements correspond exactly to the 

translation and rotation of the element coordinate system. The addi- 

tional displacements needed to bring the element into its deformed 

configuration are the deformation displacements. Consider a generic 

beam-column element with node I and J (or 1 and 2) as shown in 

Fig. 4.4. The element has six degree of freedoms per node: three 

displacements and three rotations. The nodal displacement vectors in 

global and element coordinates are designated as D 
1 to DI2 and dl to 

d12, respectively (see Fig. 4.4). The positive directions are given 

by the righthand rule. Figure 4.5 shows the three-dimensional beam- 

column element with global, nodal, and element coordinates before and 

after being deformed. The element coordinate system (x, y, z )  for the 



beam-colwon element is defined so that the x axis is and remains coinci- 

dent with a line joining the endpoints of the element, while the y and 

z axes can be defined by a third node which lies in the positive x-y 

plane (K node). In general, the third node translates as the average 

of the two end nodes. In addition, it rotates about the local axis of 

the beam (x axis) an amount equal to the average of the twisting 

rotations at the ends [ 4 . 2 1 ] .  The deformation nodal displacements are 

given by 

where 

A,, = elongation 

O;J = torsional deformation rotation 

0;. 0 ,  0;, 0; = bending deformation rotation at ends I and J 

The elongation is directly determined by 



where 

2; = position vector of node I at time t 

= position vector of node I at time 0 

t eO, 2 = the length of the element at time 0 and t, 

respectively. 

0 x0 = O - x I ,  D~~ = D ~  - D ~ ,  etc. JI X~ 

In static analysis, the times 0 and t are used to represent the initial 

stage and the current stage and not real time. 

For the purpose of computing the relative rotations at time t, 

X 8:, e f ,  0:, 8:, and OIJ, nodal unit vectors for node I and J are 

jt jt respectively (i = 1, 3). Element unit vectors defined by bIi, bJi, 

't -tt +t (x, y, z)  are denoted by ei. Since the nodal vectors bIi and bJi 

't 't rotate with the nodes, the angle between bIi and e. indicates the 
1 

magnitude of the deformation at node I. For example, the cross 

product of the two vectors 2: and is a vector perpendicular to the 

plane which contains these two vectors. The magnitude of this vector 

't 
is equal to the sine of the angle between 2: and bI1. With the 

assumption of small deformation within the updated coordinate system, 

the bending deformation rotation 8: can be obtained by projecting this 

+t 't vector (el x bI1) on the current y axis. This is illustrated in Fig. 

4.5 and the mathematical expressions are given below. 



The torsional deformation is found by taking the cross product of 

' t ' t b12 and bJ2 and projecting this vector on the current axis of the beam 

(X axis). This yields 

't +t The method of updating the nodal and element unit vectors b Ii' b~i' 
+t and e. will be discussed later. 
1 

The neutral axis deformation displacement for the beam-column 

element is given by cubic shape functions to describe bending defor- 

mations and linear shape functions to specify axial and torsional 

deformations as 



where 

d d d The una, vna, wna neutral axial deformation displacements do not 

include rigid body motion and, hence, are with respect to the element 

coordinate system in Fig. 4.2 (i.e., the moving chord which connects 

the end points). 

Following the usual Euler-Bernoulli beam assumptions that normals 

to the midline remain straight and normal, the deformation displacement 

at each point of the beam element may be written as 

From the previous assumptions, the effect of torsional deformation on 

normal strain is neglected and shear deformation is not considered. 

The relationship between the beam normal strains and the displacements 

is 



d 2 d 2 The equation is valid as long as (av /ax) and (aw /ax) are large 
P P 

d 2 compared to (au /ax) . Although this condition is similar in appear- 
P 

ance to that of moderate rotation theories, it is far less restrictive 

because v and w are the displacements relative to the updated element 
P P 

d coordinate x. By reducing the size of the element, vd and w can be 
P P 

made as small as necessary j4.221. 

From Eqs. (4.12) to (4.17), the strain and displacement can be 

related as 

where 

For general nonlinear problems, the solution algorithm (Newton-Raphson 

method) is based upon the application of a small load increment. For 



this technique, it is necessary to relate the rate of change of force 

with displacement, that is, the tangent stiffness. From Eq. (4.18) 

that rate of strain A& can be found as 

d 
A& = [B] {Ad 1 

Once the strains are known, the stresses are computed by the con- 

stitutive laws [4.23]. The nonlinear stress-strain relationship of 

the beam material will be approximated by the modified Ramberg-Osgood 

cyclic model (see Sec. 3.2.2). The incremental stress-strain 

relationship of the beam-column element is expressed as 

where E is the tangent modulus of elasticity of the stress-strain T 
curve. If the thermal strains are considered, Eq. (4.28) is modi- 

fied to 

in which 

AT = temperature above an arbitrary reference temperature 

a = coefficient of thermal expansion 



4.2 .3 .  Nodal Forces Computation 

Using the principle of minimum potential energy 14.231, the 

deformation nodal forces are found as 

where V is the volume of the element. The deformation nodal forces 

are conjugate to the deformation nodal displacements in the sense that 

their scalar product yields work, so that from Eq. (4.5) it fallows 

that 

The integral for the nodal forces, Eq. ( 4 . 3 1 ) ,  is evaluated 

numerically. The following definitions are made in order to obtain 

the deformation nodal forces: 

where i = I and J denotes = 0 and 1, respectively, and A refers to 

the beam cross-sectional area. The quantities obtained from Eqs. (4 .33)  

to Eq. (4 .36)  are assumed to be linear functions of [; for example, 



The in t eg ra l s  i n  Eqs. (4.33) t o  (4.36) must be evaluated numeri- 

c a l l y  s ince the  cross sect ion may be p a r t i a l l y  p l a s t i c .  Numerical 

methods a r e  introduced t o  calculate  the  s t r a i n s  and s t r e s se s  (which a r e  

functions of E, q, and p) a t  d i f f e r en t  points  of the  cross sect ion.  

The cross-sect ional  area i s  correspondingly divided in to  a number of 

subelements over the  depth and width as shown i n  Pig.  4.6. The 

number of layers  used i n  two direct ions  must be su f f i c i en t  t o  describe 

the  va r i a t i on  of mater ia l  proper t ies  and s t r e s se s  over the  depth and 

width. Each subelement i s  assumed t o  have uniform material  proper t ies ,  

and the  s t r a i n  is evaluated a t  the  centroid of the  subelement. The 

s t r e s s  i s  assumed constant and equal t o  the  s t r e s s  calculated a t  the  

centroid of the  subelement. 

The deformation nodal forces i n  Eq. (4.31) can be computed by 

introducing [B] from Eq. (4.27) and Eqs. (4.33) through (4.40) t o  obtain  



where 

The first term on the righthand side of Eq. (4.41) is the linear 

approximation to the nodal forces and, hence, is not dependent on the 

deformation. The second term introduces the additional contribution 

as a result of a deformation. The linear term 



has been added to Eq. (4.42), even though it does not result from 

the normal axial stress, in which G is the shearing modulus, and J is 

a torsional constant expressed as a function of the element cross 

section [ 4 . 2 0 ] .  

The nodal forces if) in the updated element coordinate system 

d can be obtained from the deformation nodal forces (f 1 by equilibrium 

as 

4.2.4. Tangent Stiffness Matrix in Element Coordinate System 

= mLiT ifdl 
in which 

The incremental deformation displacements can be related to the 

[RL] = 

incremental displacements in element coordinates by the linearized 

- 
- 1 0  0  0  0 0 1 0  0  0  

0 0 0  - 1 0 0 0 0  0  1 
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fAddl = [RLl (Ad1 (4.47) 

which, with Eq. (4.451, establishes the principle of contragradience. 

As the chord (convected coordinates) rotates as shown in Fig. 

4.2, the transformation matrix [RL] changes. That is, the transfor- 

mation from the deformation coordinates, which are based on the rotating 

chord, to the temporarily stationary updated coordinates changes. Using 

the first term of a Taylor Series, the incremental form of Eq. (4.45) 

is 

in which [R] is the changing transformation matrix. Now, since the 

increments are small, [R] is approximately [RL] and 

Equation (4.45) with [R ] remains valid for the total force trans- L 

formation during the entire displacement increment, if the increment 

is small. Since the assumed deformation shape functions are with 

respect to the chord (which moves with respect to the updated Lagrangian 

coordinates), the rate of change of the matrix [AR] is nonzero. If the 

assumed shape functions had included the rigid body motion (i.e., 

polynomials with respect to the updated coordinates), [AR] would have 

been equal to zero. 

The second term on the righthand side of Eq. (4.49) can be 

expressed by 



The following definitions are introduced 

where 

The first term on the righthand side of Eq. ( 4 . 4 9 )  can be 

expressed by 

and will be considered later. 



The matrix [kg] is the conventional stiffness matrix; [kG1] and 

[kG2] are the initial stress matrix (or the geometric stiffness matrix), 

which depend linearly on the deformation nodal displacements; and (kL] 

represents the large displacement stiffness matrix, which depends on 

quadratic terms of the deformation nodal displacements. The updated 

Lagrangian strain approach makes the strains and rotations in the 

element system small enough (for reasonably small element sizes) that 

[kL] can be omitted [ 4 . 1 8 ] .  Equation (4.49) can then be reduced to 

where 

The following definitions are made in order to obtain the expres- 

sions for [kg] ,  [kG] 



where i = I and 3 denotes F, = 0 and 1, respectively. The quantities 

obtained from Eqs. (4.59) to (4.64) are assumed to be linear functions 

of F, [similar to Eqs. (4.37) to (4.40)]. 

The conventional matrix stiffness is obtained by evaluating the 

integral [see Eq. (4.53)] 

Using the definition of Eqs. (4.59) to (4.64) gives Eq. (4.67) 

t (see following page). The linear term (GJ)T/II has been inserted 

into Eq. (4.67), even though it does not result from axial (normal) 

strain. It should be noted that for a conventional stiffness matrix 

this term is used to resist the applied torsion. 

The geometric (initial stress) stiffness matrix [k ] is obtained GI 

by evaluating the integral of Eq. (4.52) with the definition in 

Eqs. (4.33') to (4.36) and (4.59) to (4.64): 

The explicit form of [kG] (= [kG1] + [kC2]) will be shown later. 





The geometric (initial stress) stiffness matrix [k 1 ,  as shown G2 

in Eq. (4.56), is evaluated as follows. By the chain rule, since 

[R] changes with the displacements [dl, 

For the purpose of evaluating the derivative in this equation, write 

in which [%I is a transformation matrix due to the small rigid body 

motion between the chord and the updated coordinates. From Eqs. (4.45) 

and (4.701, Eq. (4.69) becomes 

Only two terms in Eq.. (4.71) will be presented here; the others 

will follow a similar derivation. Consider only the terms 

T T [8RN/ad21 Ad, and [aRN/8dg] Adg. Consider the matrix [rN], which 

forms a 3 x 3 submatrix on the diagonal of [%I [similar to Eq. 

(4.4)]. For a displacement d the transformation between the 2' 

chord and the updated coordinates is (see Fig. 4.7). 



Similarly, for a displacement d 
8' 

If d2 and d8 are small, [rN] is the sum of these two matrices. Sub- 

stituting the sum of Eqs. (4.72) and (4.73) into Eq. (4.71) (i = 2 and 

8 only) gives 

where 



I (4.77) 

Similar ly ,  f o r  i = 3 and 9 (see Fig.  4.7),  one obtains 

f o r  i = 4 and 10 (see Fig. 4.7). The average t w i s t  angle is taken 

a s  the  r i g i d  body rota t ion about the  x a x i s ,  which gives 

The r a t e  of change of [ rN]  with respect  t o  dl, d5, d6> d7,  d l l $  

and d12 i s  zero. By subs t i tu t ing  Eqs. (4.75) t o  (4.81), Eq. (4.71) 

now becomes 

The e x p l i c i t  form o f '  [kc] which can be obtained by combining [kc;] 

and [kG2] is given by Eq. (4.83) (see following page). 





where 

in which the quantities C (i = 1, 9) and B. (i = 1, 8) result from i 1 

tk~11 and [k 1, respectively. G2 

Not all terms of the initial matrix represented in Eq. (4.83) 

are of equal importance. The terms which correspond to a change in 

the axial force due to the presence of initial transverse forces B1 



and B during a rotation relative to the element system have been 2 

neglected. The transverse forces are generally quite small compared 

to the axial stiffness, so a small axial displacement will compensate 

for these changes in axial force caused by rotation of shear forces. 

The stiffness matrix [kG] is not symmetric. The unsymmetric terms 

arise in [k ] due to the twist and bending of the member B4 - B and 62 8 
t t t t the presence of an initial bending moment 2 B1/2, Q B2/2, Q B4/2, 2 B5/2, 

.Qtg7/2, and etg8/2. During a moderate rotation in the updated system, 

these unsymmetric terms will contribute very little to the total stiff- 

ness. After these terms are neglected, Eq. (4.83) becomes Eq. (4.85) 

(see following page). 

4.2.5. Coordinate Updating and Three-dimensional Transformation Matrix 

The beam-column element formulations are based on the general 

incremental updated Lagrangian continuum mechanics equations, which 

are briefly summarized in the previous sections. Consider the motion 

of a beam-column element in a fixed Cartesian coordinate system (global 

system) as shown in Fig. 4.8. In Eq. (4.48) the incremental equi- 

librium equations of a beam-column element were derived by first 

evaluating the finite element matrices corresponding to the element 

coordinate system (see Fig. 4.8), and then transforming the resulting 

matrices to the global Cartesian coordinate axes prior to the element 

assemblage process [4.1]. The finite element matrices corresponding 



0 0 0 0 0 0 0  

N w r. 
O U O U O U  

I 

0 0 UN urn G 
I 

u 
O O O U  



to the element coordinate axes are obtained by measuring all static 

and kinematic quantities in the element coordinate system. Thus, the 

t transformation matrix [T 1 ,  which relates displacements measured in 

the element system at the current configuration (at time t) to the 

displacements measured in the global coordinate system, can be obtained 

by a simple vector transformation between the element and global coordi- 

nate system. 

As mentioned before, the unit vectors e. 't 
jt st andbJi (i=1,3) 
1' Ii' 

must be updated for each incremental load in order to track the element 

and nodal coordinate systems. For the purpose of tracking the unit 

vectors e. -tt jt ' 
and bJi at the current stage, start from the initial a Y  b~ir 

'0 go stage (at time 0) when the unit vectors e. -to 

I' Ii' and bJi are the same. 

After the first incremental load is applied, the incremental displace- 

t 
ments {AD 1 are obtained in the global coordinate system 

where 

t {ADTI) = translation at node I in X, Y, and Z directions 

t [ADeI) = rotation at node I in X, Y, and Z directions 

At the initial stage, the third node K is defined as a point in 

the positive x-y plane as shown in Fig. 4.8. At the current stage, 

node I and J are displaced to the new position itt and it:, respectively. I 



The third node (K node) translates as the average of the two end nodes. 

In addition, it rotates about the axis of the beam on the average of the 

t .  . .  
twisting .'rotations'. Since the incremental displacements [AD ) are 

assumed to be small, the new position of the K node is obtained 

where 

is the translation term. The small rotation about the beam axis is 

The last quantity in Eq. (4.89), in which 

is the radius vector from the midpoint M to K. 
+t The direction cosines for the updated element unit vectors e. 
1 

(Eq. 4.2) can now be determined by vector mechanics as follows: 



+ + 
where I, 3, K are unit vectors in the global coordinate system and 

"t +t "t 
XIJ = XJ - XI , etc. 

Each element is associated with an element coordinate system (x,y,z), 

which is rotated relative to the global coordinates (X,Y,Z) by a rigid 

body motion. Incremental nodal displacements in the element and global 

coordinates are related by an orthogonal transformation 

where 

and IT ] is presented in Eq. (4 .2 )  EG 
+t Now, for the nodal coordinate system, the unit vectors gt and bJi I i 

must be updated since they rotate with the nodes. From the assumption 



t t that the incremental rotations (ADeI) and (ADeJ) are small, the incre- 

mental vectors can be obtained by taking the cross product of the two 

-to vectors, dtgI and bIi, and updating 

These current updated vectors must be normalized to obtain the direction 

cosines for the current updated unit vectors (Eq. 4.1). For the next 

increment, t = 0 refers to the previous increment. 

4.2.6. Tangent Stiffness Matrix in Global Coordinate System 

The nodal forces and displacement in the global system can be 

related to the current system as follows: 

(FI = I T I ~ ~ ~ I  

Id1 = [TI ( D l  

The incremental nodal forces in the global system can be found as 

WI = [ T I ~ ~ A ~ I  (4.103) 

Substituting Eqs. (4.57) and (4.97) into Eq. (4.103) yields the 

tangent stiffness of the beam-column element in the global coordinate 

system as 

im) = [KIT(m) 

where 



4.3. Soil Spring Finite Element 

4.3.1. Soil Model Description 

The basic assumptions employed for the treatment of the three- 

dimensional soil model are as follows: 

(1) Torsional soil resistance is not considered in the soil-pile 

interaction I4.241. 

(2) There is no coupling between the axial and lateral soil 

resistance. That is, the deformation modes for an isolated 

soil spring are independent of each other. Parker and Reese 

f4.251 have reported that the relationship between axial load 

and displacements of the soil is not significantly affected by 

the presence of lateral deflections of the soil, and vice 

versa. Soil behavior can thus be divided into axial and 

lateral parts as described in Secs. 3.3 and.3.4. 

(3) The behavior of the soil at a particular depth is independent 

of the soil behavior at another depth [4.26]. 

(4) The lateral soil behavi0r.i~ assumed to be independent in 

the two orthogonal lateral directions. That is;.the soil 

resistance in the y direction is not affected by the soil 

resistance in the z direction. Two independent lateral 

springs will be placed in the y and z directions, 

respectively. 

The soil displacements and forces are calculated on the basis of the 

displacements in the element coordinate system as shown in Fig. 4.9. 



4.3.2. Soil Springs 

If nonlinear behavior is considered, the soil spring stiffness is 

not a constant and instead is a function of displacement. Only the 

lateral spring element in the y direction will be discussed here, since 

the other soil spring would follow the same derivations. As discussed in 

the previous section, the soil resistance directly opposes the lateral 

displacement in the y direction. The lateral soil resistance per unit 

length of the pile p is assumed to be linearly distributed along the 

pile element (Fig. 4.9). A set of p-y curves is represented by the 

modified Ramberg-Osgood cyclic model (see Sec. 3.2.2). In this figure, 

p, y, and k (the lateral soil tangent stiffness) are in the updated 
Yt 

element y direction. The relationship between incremental soil 

resistance and displacement can be expressed following Eq. (3.5) as 

The quantities Ay, kyt, and p are assumed to be a linear function 
Y 



By the principle of virtual work 

iAfl = [kylTiAdl 

where 

The explicit form of soil lateral tangent stiffness for y motions is 

The total nodal forces if) can be obtained by using the principle 

of virtual work as 

or, explicitly, since degree-of-freedom 2 and 8 are for the y displacements 

of the beam element, 

The tangent stiffness of the nonlinear springs for the other cases 

(lateral z spring, vertical spring, and point spring) can be obtained 



in a similar manner (see Fig. 4 . 1 ) .  The matrix [ksIT represents the 

tangent stiffness for the soil model, which is added to the beam stiffness 

[kIT to form the tangent stiffness of the soil-pile interaction model. 

4 . 3 . 3 .  Backwall Soil Model 

Figure 4.10 shows the backwall soil model which is considered 

in integral bridge abutments. Longitudinal bridge movements may cause 

parts of the backwall to come into contact with or separate from the 

soil. In the idealized backwall soil model, it can be assumed that the 

backwall soil is attached to the backwall, so that the soil spring 

properties of the backwall soil can be treated the same as the soil 

springs attached to the pile. 

4 . 4 .  Basic Nonlinear Solution Techniques 

In previous sections the finite element model which is used to 

predict the nonlinear behavior of pile-soil interaction has been described. 

The general incremental tangent stiffness equations for the beam column 

and soil spring elements are the major results. In this section these 

equations become the basis from which a general incremental nonlinear 

solution procedure is formulated. 

4 . 4 . 1 .  The Incremental Load Technique 

The conditions of equilibrium for a given structure are satisfied 

by solving the structural stiffness equations for the unknown general- 

ized (global) displacements given a known applied loading. In a linear 

analysis environment this solution procedure is straightforward because 

all of the stiffness parameters are constant, that is, independent of 



displacement and expressed in closed form. This is not the case in a 

nonlinear analysis environment where the stiffnessparameters are them- 

selves dependent on thestate of total displacement,.total stress, and 

material properties, and may not be conveniently expressed in closed 

form. In this case the most suitable approach to analysis is by apply- 

ing the total load in a series of small finite-sized increments. For 

each load increment the resulting increment of displacement is deter- 

mined from the incremental stiffness equations where the stiffness 

parameters are evaluated to reflect the instantaneous state of the 

total displacement, total stress, and material characteristics that 

exist just prior to the application of the load increment. The total 

displacement after the load increment has been applied is evaluated 

by adding the computed displacement increment to the total displacement 

that exists prior to the application of the load increment. 

This type of solution is a piecewise linear solution, a physical 

representation of which is illustrated in Fig. 4.11. This figure shows 

three load-displacement (F - d) curves for a single degree-of-freedom 

system. Curve A represents the linear behavior which would result 

by solving the governing stiffness equation for the total load applied 

in one increment; curve B is the piecewise linear solution which would 

result by applying the total load in several increments; and curve C 

represents the exact nonlinear behavior. It is clear that as the size 

of the load increment approaches zero (or the number of load increments 

approaches infinity), the piecewise linear curve approaches the true 

curve. Since load increments of infinitesimal order are impossible to 



achieve, a reasonable number of moderately sized load increments will 

be applied. 

' 4 .4 .2 .  Newton-Raphson Iteration Method' 
. ,  . 

As indicated in Fig. 4 . 1 1 ,  it is 'desirable for the structure 

solution procedure ti idnie as close to curve C with as few load incre- 

ment's a s  poisible to obtain the desired analytical accuracy. This can 

be achieved by einploying the Newton-Raphson method to iteratively 

satisfy equilibrium. 

This approach is characteristic of the tangent stiffness technique 

where, in a given load increment, the Newton-Raphson iteration method 

is applied so that the element nodal displacements are succ&ssively 
. . 

corrected' until joint equilibrium is satisfied. These displacement 

corrections are computed using element tangent stiffness matrices, 

which are ~uccess'i&ly computed to reflect the most current state of 

total displaceme,nt, total stress, and material properties. 

The basic charact,eristics of this technique are illustrated in 

Fig. 4.12 for a single degree-of-freedom system which is characterized 

by the following parameters: 

U = element stress 

f = element force 

F = applied external load 

d = element displacement (in this case for a single degree-of- 

freedom, this is the same as the global displacement D) 

E = element material property parameter--the instantaneous T 

slope of the element stress-strain relationship 



% = k (d, is, E ) the tangent stiffness--a function of total T T 

element displacement d, total element stress is, and the 

state of the element material property parameter ET. 

At a particular level of applied load, given by F the total 
j' 

element stress is given by is the total element force is given by 
j J  

f., the total element displacement is given by d., andthe current 
J J 

tangent stiffness is given by %.. This state, which is indicatedby 
J . . 

point 1 op Fig. 4.12, is reached after the application of several load 

increments. 

At this level of applied 1oad.F the description of the Newton-. 
j' 

Raphson iteration begins with the application of an increment of 

external load AF. To satisfy equilibrium, the following relationship 

must be true: 

Equation (4.115) is a representation of the linearized incremental 

analysis wherein the structure is assumed to behave linearly during 

the application of an incremental load AF. Equation (4.115) also 

establishes the analysis at point 2 of Fig. 4.12. This increment 

of displacement ad? which results from the application of AF, is 
J '  

1 computed by rearranging Eq. (4.115) and solving for Ad. as follows: 
J 

The increment of displacement is added to the previous total displace- 

ment d. to form the new total displacement 
J 



1 1 d. = d. + Ad. 
J J J 

where 

1 d. = the new total displacement 
J 

Note that the subscript denotes the load increment number and the 

superscript denotes the iteration number within this load step. 

The analysis is still at point 2 on Fig. 4.12, where a new 

material property parameter E' and a new state of element stress 
T j 

1 u. are computed in order to reflect the new displaceolent dl Since 
J j' 

the element stiffness k is dependent on a, d, and ET, it is recomputed 
T 

to reflect a' dl and E' as follows: ' j' T j 

The stiffness parameter 1Cf is the tangent stiffness at point 3 on the 
j 

actual load-displacement curve of Fig. 4.12. 

1' 
'The internal force due to the new displacement d. and thenew 

. . J 
1 .  

state of' elein&it stress u. 1s computed in the following manner: 
J 

J 

where 

1 f. = the new total internal force 
J 

Equation (4.119) establishes the analysis at point 3 of Fig. 4.12. 

At this point, equilibrium is satisfied if and only if the following 

relationship is true: 



However, because of nonlinear behavior, it is clear that equilibrium 

1 at point 3 is not satisfied exactly by Eq. (4.120) because Ad. and 
J 

1 d. were computed on the basis of the previous tangent stiffness kTj, 
J 

1 1 while f. was computed on the basis of the new state of u. and d 
1 

J J j. 

This established the need for a solution technique like the Newton-Raphson 

method, which attempts to modify f1 in such a way as to satisfy the 
j 

equilibrium equation (Eq. 4.120) at the new applied load level F. + AF. 
J 

Since Eq. (4.120) is not satisfied, it is more suitably expressed 

in the following form: 

1 AF. = F .  + A F - f  1 
J J j 

where AF? is called the residual or unbalanced force, which results 
J 

from the changing stiffness. The Newton-Raphson method thus attempts 

to find an equilibrium solution for an increment of external load 

AF, by forcing the residual AF1 to be as close to zero as possible 
j 

through a series of iterations. 

The next step in the iteration method is to attain a new equi- 

librium solution by assuming that the residual is applied as an 

external load 

~d: = (Gj) -I (F. + AF - 1 \ 
J fj / 



2 where Ad. represents a new displacement increment, which is a displace- 
J 

1 .  ment correction to d in order to adjust equilibrium to compensate for 
j' 

the residual. The analysis is now at point 4 of Fig. 4.12. This 

1 M? is added to d. and a new total displacement d2 is obtained. 
J J J 

2 2 Following the same procedures, one computes Uj, ETj, 2 , a n d . .  If 
J 

this iteration is convergent, then this new residual is smaller than 

the previous residual and the true equilibrium solution is approached. 

Solution of the displacement for the next load increment can proceed 

by the same processes as before. 

4.4.3. Convergence Criteria 

If the equilibrium is ultimately satisfied for a particular load 

increment, this method must result in a series of residuals which tend 

toward zero. It will be assumed that the iteration converges and 

equilibrium is satisfied when the most recently computed displacement 

'in~rement and/or residual is less than or equal to some user-prescribed 

tolerance [4.17]. The convergence criterion used herein for a single 

degree-of-freedom is 

where adi+' is the most recently computed displacement increment and 
j 

i+l is 
d! is the current state of total displacement just before Ad 

J j 

added to form a new total displacement. If Eq. (4.123) is satisfied, 

then the convergence is indicated, equilibrium is sufficiently satis- 

fied, the iteration stops, and the analysis proceeds to the next 



increment of applied load. This stage of t.he analysis is. indicated by 

point 6 of Fig. 4.12. 

In the event that convergence is not satisfied, it may be that 

the displacement increments are diverging, which indicates that the 

iteration process cannot find an equilibrium solution for the given 

increment of applied load. Divergence can be caused by a numerical 

instability because of the stiffness changing too rapidly within the load 

increment. In the event of such behavior, a smaller load increment may 

produce more stable behavior. , . 

On the other hand, if the load increment is already reasonably 

small, divergence may signify that the structural .stiffness istending 

toward zero, which indicates instability of the structure. In any case, 

if divergence is detected, the Newton-Raphson process and the total 

analysis are terminated. 

The Newton-Raphson process and the total analysis are terminated 

on the basis of one additional mechanism. It is a safety mechanism 

and is employed in order to prevent excessive iterations.. Thus, the 

iterative process is terminated and the total analysis is terminated 

if the number of iterations exceeds a user-specified maximum. 

4 . 4 . 4 .  The Complete Solution Procedure in Detail 

The basic properties of load incrementation and Newton-Raphson 

iteration described in the previous sections are combined to form the 

basis of the total nonlinear solution procedure. In this nonlinear 

solution procedure the most current information available concerning 

the structure is used to calculate the incremental quantities at any 

step. In other words, the tangent stiffness matrix at the start of 



each iteration is used to estimate the next incremental quantities. 

It requires.th9 formatign of the element tangent stiffness transformed 

into global. coordinates at the start o f  each iteration. 

. . . , 
Suppose that current {~f]',, I{), [ p i ) ,  11:) , {MY), [MT~),. (ff],'. 

(F;) ,  [xfl, . (bf 1, (efl, (Llf 1, Id;), (A:~], and I<) are given at the 
" 

jth increment and the ith iteration.  he condition i = 1 and j = 1 is 

1 the initial stage in the nonlinear problem. Thus, except for XI , 
b ,  and e l ,  the above vectors are n u .  To generate the i + 1 

iteration by the updated Lagrangian method, the following steps will 

be followed: 

Step 1: Calculate the current unbalanced forces in the global 

system 

where 

IFj+l) 
= forces for j + 1 load increment 

13 I = forces from previous iteration i 

Step 2: Establish the current element coordinates (xflfor the 

element i t .  haod by for&lating the tra~sformation matrix'(<] from the 

current global coordinates ( XIj, i' I , [xij], a$d {xij]. 
. , . . 

Step 3 :  . ~knkrate the'sttucturil tangent stiffness in current 

coordinates Ixtl 



(a) Establish ET a t  each integrat ion point through the cross 

sect ion (with current s t r a i n  ,deformation);. t h a t  is; Eq. (3.5) 
, , 

is used t o  ca lcu la te  E f o r  static a n d c y c l i c -  loading. T 

(b) Perform (EA)T, ( E K ~ ) ~ ,  (EK')~, ( ~ 1 ' ) ' ~ ;  (EI~) , ;  and .(EI'"), 
. , 

in tegra l s  a t  each end from Eqs. (4.59) t o  (4.'64). .: 

(c) Determine [kij] [from Eq. (4.65)]; a l so  with current 

[~:1, [";I, {$;I , and 
[ f m  Eqs. (4.33) t o  

(4.3611 f ind  [khi] from Eq. (4.85): - - 
[ ] (from Eq. (4,112)). (dl Generate [k:IT by adding ksj 

(e) Transform i n t o  global coordinates through the trans- 

formation matrix (Eq. 4.98) t o  get  (Eq. 4.105). 

( f )  Assemble i n t o  the s t ruc tura l  tangent s t i f f n e s s  

Step 4: Solve fo r  the  incremental displacements with the current 

unbalanced forces 

Step 5: Update coordinates and formulate [T;"] 
- 

(a )  Update coordinates f o r  node I ,  J, and K from Eqs. (4.87) t o  

. , 

(b) update displacements, (I)yl\ = '.ID:] + (AD!" J. . . 1 .. . 
(c) Update nodal u n i t  vectors  (b;*') from ~ q s .  (4.99) t o  

. .  . :  . .  . 



(d) From the updated coordinates in (a), find the unit vectors 

e i. element coordinate system from Eqs. (4.93) to 

(4.95) to formulate [?I. T. 

Step 6: Calculate updated strains and stresses' 
, . 

(a) Use the unit vectors bIj 
. . 

( ] , { b , and (e;f '1 to find 

[d:yl],frk Eqs. (4.6) to (4.11). 

(b) Compute kyl) from Eq. (4.18). 
(c) Compute lo;fl) from ~ q .  (3.3). 

Step: Compute element nodal forces in the element system 

(a) Perform numerical integration from Eqs. (4.33) to (4.36) and 

use Eqs. (4.42) and (4.43) to find [;"I A and[.;:] . 
(b) ~ompute(fy i+ll from ~ q .  (4.41). . - 
(c) Compute (t:tl]'rom E (4.45) 

Step 8: Find the equilibrium external nodal forces in global 

coordinates 

(Fj") = I[TJi+l] (f;fl) 

Step 9: Test for convergence. If not satisfied, return to step 1. 

Otherwise, store these stresses and strains and go to the next increment 

load (F. ). Each step of this algorithm is tangent to the luad-versus- 
3 +2 

displacement curve, as suggested before. The process is interpreted 

graphically in Fig. 4.13. , 



4.5. Analytical Verification 

Based on the theory outlined above, two computer programs (IAB2D 

and IAB3D) have been developed to solve the nonlinear pile-soil inter- 

action problems for both two- and three-dimensional cases. A number of 

examples have been analyzed to establish its reliability. Three sample 

problems were analyzed with the three-dimensional program: (a) large 

deflection analysis of a shallow arch; (b) large displacement, three- 

dimensional analysis of a 45O bend; (c) a simple soil problem to check 

soil nonlinearity and cyclic behavior. 

4.5.1. Large Deflection Analysis of a Shallow Arch 

The clamped circular arch with a single static load at the apex 

was analyzed for buckling using the beam-column element, as shown in 

Fig. 4.14. The material of the arch was assumed to be isotropic 

linear elastic. One half of the arch was idealized using six equal beam- 

column elements. 

This arch was also analyzed by Bathe and Bolourchi, who used 6, 

12, and 18 equal beam elements and 8 six-node isoparametric elements 

with 2 x 2 Gauss integration [4.1]. Mallet and Berke used 4 

"equilibrium-based" elements [4.27]. Dupuis et al. [4.281 analyzed 

the same arch using curved beam elements. In addition, the experiment 

results given by Gjelsvik and Bodner [4.29] are also shown in Fig. 4.14. 

Figure 4.14 shows the predicted load-deflection curve of the 

arch obtained by using IAB3D. In this analysis the use of beam-column 

elements is quite effective, and the numerical results match the experi- 

mental results. 



4.5.2. Large Displacement Three-dimensional Analysis of a 45' Bend 

The large displacement response of a cantilevered 45O bend beam 

subjected to a concentrated end load, as shown in Fig. 4.15, was cal- 

culated. The concentrated tip load is applied in the positive Y direc- 

tion. The material was assumed to be linearly elastic. 

The linear and nonlinear solution of this curved beam subjected 

t o a  tip load was given by Bathe and Bolourchi [4.1] by using 8 equal 

straightbeam e1ement.s and 16 sixteen-node, three-dimensional solid ele- 
. . 

ments. Figure 4.15 shows the tip deflection predicted by ADINA using 

the two finite element models 14.301. The ADINA solution, obtained with 

a large number of elements and load steps, should be regarded as the 

most correct answer. 

The numerical results obtained by using the IAB3D computer program 

with eight equal, straight beam-column elements is also shown in Fig. 4.15. 

The predicted tip deflections match with ADINA solutions. Figure 4.16 

also shows the deflected shapes of the bend at various load levels. 

4.5.3. Soil Problems 

Several soil problems were analyzed to check the soil material non- 

linearity and cyclic behavior. Since the vertical, lateral, and point 

springs are assumed to be similar and uncoupled, only the lateral springs 

are considered here. For example, suppose an HP14X73 pile was embedded 

below the ground as shown in Fig. 4.17. The soil responses can then 

be observed by specifying loads and displacements in the Y and Z directions. 

Theoretical displacements and soil resistance follow the p-y curve path. 

For a specified load the displacement will be obtained from the Newton- 

Raphson solution algorithm. For a specified cyclic load and displacement, 



the soil response will follow the modified Ramberg-Osgood cyclic curves. 

Figures 4.18 to 4.19 show the soil response for specified cyclic loads 

in Y, Z, and YZ directions, respectively. 

4.6. Two-dimensional Version 

4.6.1. Specialization from the Three-dimensional. Model 

The general features of the two-dimensional program IAB2D are 

similar to the three-dimensional program IAB3D, except it is specifically 

written for two-dimensional problems, and, hence, more efficient than 

using IAB3D for those problems. The two-dimensional version is different 

in several ways from the program developed in the previous report 14.241; 

for example, 

(1) The soil properties are assumed linearly distributed along 

the element instead of the step-wise distribution. 

(2) The modified Ramberg-Osgood cyclic model is introduced in 

order to model cyclic behavior. 

(3) Beam and spring elements can be arbitrarily oriented. 

(4) Thermal strain is introduced into the stress-strain relation- 

ship of the beam-column element to permit the thermal expan- 

sion and contraction. 

( 5 )  Geometric boundary conditions are permitted to change between 

load steps. 



As discussedin Sec. 4.2.1 and 4,2.2, three different coordinate 

sistems are required for three-dimensional update Lagrangian formula- 

tion. In the two-dimensional case, only two coordinate systems are needed, 

that is, only element and global coordinate systems. The deformation 
. , 

d T - displacements, id I - , . jbIJ, 8;, B Z J ) ,  can be found as follows l4.241: 
. , 

D XO 
a = sin -1 52 21- ~ 4 1 ~ i 1  

Q O Q ~  

where 

o , =  rigid body rotation in the X-Y plane. 

4.6.2. Analytical verification 

Several numerical example problems are solved using the two- 

dimensional computer program IAB2D. At the same time, these problems 

were also solved with IAB3D to confirm the validity of the three-dimensional 

computer problem. As mentioned in the previous report [4.24], a beam- 

column problem and a short, thick column problem were first used to check 

geometric and material nonlinearity, respectively. Additional problems 

were introduced, such as: (a) snap-through problem, (b) Williams' toggle 

problem, (c) two-dimensional frame problem, (d) thermal problem, and 

(e) soil problem. 



4.6.2.1. Snap-through Problem 

Figure 4.20 shows a simple symmetric truss with a concentrated load 

at the top. This type of problem can be solved by incrementing the 

deflections (rather than loads). The load-deflection curve is shown 

in Fig. 4.20. Several positions can be used to check the results. 

When the truss has a deflection where A equals -1.2 in. (the truss is 

in the horizontal position), the truss resists no load. If the truss 

has a deflection where A equals -2.4 in. (the truss is below horizontal 

by 1.2 in.), the strain is zero and, hence, the bar forces are zero. 

If A is greater than -2.4 in., the truss members are in tension and the 

load increases. 

4.6.2.2. Williams' Toggle Problem 

The toggle shown in Fig. 4.21, having E = 29000 ksi and A = 1 sq in., 

was first analyzed and tested by Williams [4.31]. The load-deflection 

curve can be obtained by using specified load or displacement as shown 

in Fig. 4.21. 

4.6.2.3. Two-dimensional Frame Problem 

A two-dimensional square portal frame subjected to two vertical loads and 

a small horizontal load is shown in Fig. 4.22. The theoretical buckling 

loads for the side-sway mode are: Pcr (fixed base) 4605 kips, and Pcr 

(hinged base) 1170 kips [4.32]. The horizontal load is quite small 

(0.001 P) but is sufficient to initiate geometrically nonlinear behavior. 

The load-deflection curves for both cases (fixed base and hinged base) 

are shown in Fig. 4.22. The numerical results show that the critical 

load for the fixed base is 4600 kips and for the hinged base is 1150 kips. 



4.6.2.4. Thermal Problems 

Several thermal problems were used to check thermal strain caused 

by temperature changes: (a) cantilever beam, subjected to uniform and 

gradient temperature changes; and (b) fixed-end beam, subjected to uni- 

form and gradient temperature changes. The results, although not shown 

here, compared exactly with theoretical solutions. 

4.6.2.5. Soil Problems 

Soil models were also tested in the two-dimensional computer program, and 

the results are close to the theoretical answers and the numerical results 

obtained in IAB3D. 

4.6.3. Experimental Verification 

4.6.3.1. Load Transfer in End-bearing Steel H Piles 

In Ref. [4.33], the increase in the load-carrying capacity of an 

end-bearing pile due to load transferred to the surrounding soil by 

friction was experimentally studied. Site conditions, pile driving, 

and instrumentation were examined. The strain-gage readingswere 

analyzed to determine the distribution of the load transferred along 

the piles. The piles were loaded and unloaded in increments to 150 kips, 

300 k i p 4 5 0  kips, and 600 kips. A plot of pile load as a function of 

depth is:shown'in Fig. 4.23. From these curves, the true elastic 

shortening can be obtained, and the total displacements at 'each pdint of 

the piletcan be 'calculated by adding the accumulated elastic shortening 

to the observed tip displacements as shown in Fig. 4.24. Two sets of 

f-z andq-z curves(one set for each pile) can be constructed [4.24]. 

Since all the pile load tests were held at the same site, the final 

set of f-z curves was taken as the average of the f-z curves from HP 



14x89 and HP14X117. Soil parameters for the modified Ramberg-Osgood 

cyclic curves are obtained by approximately fitting the irregular 

shape of the average f-z curves and q-z curves. The pile is subdivided 

into eight elements of unequal length in order to correspond to the 

experimental data given in Fig. 4.23. The load-settlement curves for 

HP14x117, both observed and predicted values, are plotted in Fig. 4.25. 

The results calculated from the computer solution (IAB2D) are a fairly 

good approximation to the results obtained in the experiment. 

4.6.3.2. Lateral Load Tests on Drilled Piers in Stiff Clay 

Two drilled piers were selected from the laterally loaded pile 

tests conducted by Bhushan et al. l4.341. (These piles were analyzed 

during the previous project [4.241 by YANGS and are repeated here 

using the current program.) Measurements of horizontal ground line 

displacements were made for two piers. Soil properties, as determined 

by borings at each test site, are summarized in Table 4.1. The two 

piers (1 and 2 in Table 4.1) were constructed with a spacing of about 

20 ft and were loaded by jacking between them. Displacements of the 

piers were measured by the dial gauges located 1 ft above ground 

surface. The properties of Table 4.1 are consistent with a very stiff 

clay in Table 3.11. Thus, an n = 2, Ramberg-Osgood curve, was used to 

approximate the p-y curve. (An n = 1 curve was used in the first project, 

i4.241.) The displacements at the top of the pier are plotted in 

Fig. 4.26 (Pier No. 1) and Fig. 4.27 (Pier No. 2). A comparison 

between the predicted values obtained from XAB2D and the experimental 

results shows that the results are adequate, certainly within limits 

usually expected with this type of analysis. The error in the initial 



s t i f f n e s s  i n  these figures i s  caused by the  approximation of the  

i n i t i a l  s l o p e  of t he  p-y curves. 

4.. 6.3.3. ' ~ a t e r e l  Load Tests on I n s t h e n t e d  Timber P i les  

Lateral  load t e s t s  were conducted by Alizadeh I4.351 on four 
. . 

instkurnented, c l a s s  B timber p i l e s  a t  twd s i t e s  approximately 1000 f t  

apar t .  The two p i l e s a t  each t e s t  s i t e  were 7 f t  apar t .  

The s o i l s  a t  Test S i t e  1 consisted of 4 f t  of sand and gravel 

underlain by layers  of clay. The s o i l s  a t  Test S i t e  2 consisted of a 

l ayer  of " f a t  clay" over layers  of s i l t  and "lean clay." A t  both s i t e s  

the  c lay  s o i l s  had a s o f t  t o  medium consistency and an average shear 

s t rength of about 600 psf [4.35]. The timber p i l e s  used were 43-ft 

long and were s l i g h t l y  tapered. The diameter of the  embedded portion 

of the  p i l e s  ranged from j u s t  over 1 f t  near the ground surface t o  

approximately 0.8 f t  near the  p i l e  t i p .  The modulus of e l a s t i c i t y  of 

each p i l e  was determined from ca l ibra t ion  t e s t s  (Table 4.2) [4.351. 

Each of the  p i l e s  was instrumented with s t r a i n  gauges. The two 

p i l e s  a t  each t e s t  s i t e  were tes ted  a t  the  same time by jacking the 

p i l e s  apa r t .  The loads were applied a t  t he  ground surface i n  incre- 

ments of 5 kips up t o  a maximum load of 20 kips.  The p i l e  displace- 

ments were measured a t  the ground surface.  

For t he  analysis  of the  p i l e s  using the f i n i t e  element program, the 

foundation s o i l s  were taken t o  be a combination of the  s i x  typ ica l  s o i l  

types presented i n  Sec. 3.5 of t h i s  report .  The clay and s i l t  s o i l s  a t  

both t e s t  s i t e s  were assumed t o  be s o f t  c lay with average undrained 

cohesion values of 620 psf a t  Test S i t e  1 and 670 psf a t  Test S i t e  2. 

The sand and gravel layer  a t  Test S i t e  1 was assumed t o  be medium sand. 



A constant pile diameter, equal to the average diameter of the upper 

half of the embedded portion of the pile, was used. The ultimate 

strength of the timber was estimated to be 7230 psi [4.36]. 

The experimental results and the results obtained with the finite 

element program are compared in Figs. 4.28 to 4.30. For the smaller 

loads, the! results from the program for piles 1-A and 1-B are close to 

the experimental values but for the 20 kip applied load, there is quite 

a difference (Figs. 4.28 and 4.30). The computed results were not as 

close to the experimental results for piles 2-A and 2-B. The discrep- 

ancies are probably because of inadequate modeling of the soil, which 

had not been quantitatively described in Ref. 14.241. 

4.6.3.4. Pile Response to Axial and Lateral Loading 

Combined axial and lateral load tests were conducted on three pile 

groups and on a single pile by Stevens et al. 14.371. The experimental 

data for the single pile will be compared to values, predicted by the 

finite element program. The soil profile at the test sight is shown 

in Fig. 4.31. The piles are installed primarily in alluvial sands. 

The friction angle, as determined from triaxial compression tests, 

ranged from 38O to 41°. The blow count varied from 5 to 40 blows/ft 

and the dry unit weight ranged from 103 to 115 pcf [4.37]. The ground- 

water table during the tests was maintained at 1 ft below the ground 

surface by a dewatering system. 

A schematic diagram of the pile is also shown in Fig. 4.31. The 

piles used in the test were untreated green Douglas fir piles. The 

modulus of elasticity and ultimate strength of the timber were taken 

to be 2000 ksi and 3615 psi, respectively 14.361. The piles had initial 



lengths of 43 to 45 ft, butt diameters of 12 to 14 in., and tip diam- 

eters of 8.5 to 10 in. The piles were installed by jetting and driving 

to the prescribed tip elevation [4.37]. 

The pile groups and the single piles were subjected to four types 

of tests: cyclic preloading, pile driving effects, axial load testing, 

and combined load testing. The results of the axial and combined load 

tests on the single piles will be presented here. For the axial load 

tests the loads were applied in 60 kip increments until failure. For 

the combined load test an axial load of 60 kips was first applied to 

the pile. Then a lateral load was applied to the pile 28 in. above the 

ground surface in increments of 12 kips until failure. The lateral 

deflection was measured 33 in. above the ground surface. 

For determining input for the finite element program, the 20-ft- 

thick layer of sand near the surface was assumed to be medium sand. 

The silty clay and sandy silt layers were modeled as stiff clay, and 

the layer of sand near the bottom of the pile was assumed to be dense 

sand. The curve parameters for each layer were determined from the 

equations in Tables 3.2, 3.4, and 3.5. A constant pile diameter of 

11.75 in. was used for the computer analysis. This constant diameter 

is equal to the average diameter of the upper half of the embedded 

portion of the pile. The boundary conditions used in the computer 

analysis are shown in Fig. 4.31. The loads on the pile were applied 

using hydraulic jacks. The pile was assumed to be pinned at the top 

of the vertical hydraulic jack. The pile cap and hydraulic jacks were 

modeled as a single rigid element. 



The results of the experimental tests and the computer analysis are 

shown in Figs. 4.32  and 4 . 3 3 .  These figures show that the results 

obtained using the finite element program are close to the observed 

values, although the finite element program does predict a lower ulti- 

mate load for the axial load test. 

4 . 6 . 4 .  Guidelines for Program Usage . . , , 

The basic philosophy of the finite elementmethod is to analyze 

a piecewise approximation to the structure. Specifically, the struc- 
. . 

ture or body is divided into finite elements; simple functions,. usually 

polynomials, are assumed to approximate the displacements within each 

element. The greater the number of terms included in the approximation, 

the more closely the exact solution is represented [ 4 . 2 3 ] .  For example, 

in the beam-column element the displacement functions . . (shape functions) 

are assumed to be a linear polynomial in the longitudinal direction and 

a cubic polynomial in the transverse direction. 

In the region of high curvature gradients, a finer mesh is 

necessary to obtain satisfactory solutions. For a bea.m on an elastic 
. . 

foundation, 4  to 8 elements in a one-half wave of the deflected slope 

will provide satisfactory results. For elastic problems the length of 

one-half wave is n/p 14.381 where 

where 

kY 
= the lateral stiffness of the soil 

a = length of the pile 

EI = the flexural rig,idity of the pile 



For inelastic problems, high curvature gradients occur in the region 

of a plastic hinge and a finer mesh is required to achieve comparable 

accuracy. The experience of the authors indicates that the change in 

curvature between elements should be no more than 0.0001 rad./in. 

Also, the mesh must be sufficiently fine to model changing soil and 

pile properties. 

Load step sizes are controlled by the relative amount of nonlinear 

behavior. For example, convergence can become a numerical problem in 

the plastic region due to the difference between loading and unloading 

moduli. This problem can usually be overcome by reducing the load or 

displacement increment. 

Mesh size and convergence problems are encountered in all types of 

finite element analysis. Usually, these problems can be analyzed by 

reducing the mesh (or load increment) size until no significant change 

in the answer occurs. 



5. DESIGN METKOD 

5.1. Introduction 

One of the objectives of this study was to develop a simplified 

design method for analyzing piles in integral abutment bridges. The 

design method could then be used to determine the maximum allowable 

length for an integral abutment bridge. In the following sections a 

design model will be presented and the axial, lateral, and combined 

axial-lateral behavior of the model analyzed. From this information 

the design method will be formulated, and examples illustrating the 

use of the design method will be presented. 

5.2. Design Model 

The model used to describe the soil-pile system is shown in 

Fig. 5.l(a). The model consists of only one pile. Lateral loading 

group effects can be ignored if the spacing of the piles perpendicular 

to the direction of loading is greater than 2.5 to 3 times the pile 

diameter or width [5.1,  5.21. The pile is idealized as a beam column 

with an elastic, perfectly plastic, moment-curvature relationship, as 

shown in Fig. 5.l(b). The boundary conditions at the top of the pile 

are assumed to provide lateral restraint and either zero (pinned condi- 

tion) or complete (fixed condition) moment restraint. The tip of the 

pile is assumed to be free. 

The soil is idealized as three sets of springs: lateral springs, 

vertical springs, and a point spring. The soil resistance-displacement 

relationships for the springs are shown in Fig. 5.l(c). The design 



model assumes these relationships are bilinear, as opposed to the finite 

element model which assumes the relationships are in the form of the 

Ramberg-Osgood curves presented in Chapter 3. The soil parameters (the 

ultimate soil resistance and the initial stiffness) used in each model 

can be obtained from the equations in Chapter 3. The behavior of the 

present model will be analyzed in the following sections and will be 

compared with results from the finite element program described in 

Chapter 4. 

5.3. Axial Behavior 

The assumed axial behavior of the soil-pile system can be approxi- 

mated by the bilinear load-displacement curve in Fig. 5.2. The param- 

eters required to describe the axial behavior are the axial stiffness 

Ka and the ultimate axial load VU. Equations for determining the 

axial stiffness are given in Sec. 5.3.1, while equations for determining 

the ultimate axial load are given in Sec. 5.3.2. 

5.3.1. Axial Stiffness 

The axial stiffness of the soil-pile system depends on the stiff- 

ness of the vertical springs kv, the stiffness of the point spring 

k and the axial stiffness of the pile AE/L. The axial stiffness 
9' 

K can be obtained by analyzing a differential element of an axially 
a 

loaded pile, as shown in Fig. 5.3(b). From this figure the following 

differential equation can be written: 

dV = kv udx (5.1) 



where V is the axial load on the pile, u is the displacement of a 

point on the pile, and x is the depth below the ground surface. The 

general solution of this equation is 

with the boundary conditions 

The value A is the cross-sectional area of the pile, Ae is the effec- 

tive pile tip area, and E is the modulus of elasticity of the pile 

material. For an H pile, Ae is the rectangular area formed by the sec- 

tion depth and the flange width. The values c and c2 are constants 1 

determined from the boundary conditions. From the above equations the 

axial stiffness of the soil-pile system Ka is obtained 

, . 
(for 11' > 2) ( 5 . 4 )  

The values r and s in Eq. (5.3) are coefficients from Fig. 5.4, L is 

the embedded length of the pile, and 2' =qkV/tl~ L. A different method 

of determining the load-settlement curves is presented in Ref. [5.31. 



5.3.2. Ultimate Axial Load 

There are two types of axial failure mechanisms: the slip mechanism 

and the lateral mechanism. The slip mechanism occurs when the soil 

fails and the pile slips through the soil. The pile remains essentially 

undeformed. The lateral mechanism occurs when the pile deflects 

laterally and mobilizes the lateral soil springs. The ultimate axial 

load V is the load associated with the mechanism which forms first. u 

5.3.2.1. Slip Mechanism 

The load capacity of the pile for the slip mechanism is equal to 

the sum of the load carried by skin friction along the length of the 

pile and the load carried by end bearing at the pile tip, as shown in 

Fig. 5.3(a). This load can be calculated from Eq. (5.5). 

V = skin friction capacity + end-bearing capacity u 

Expressions for calculating fmax and are given in Chapter 3. 

5.3.2.2. Lateral Mechanism 

Failure of the soil-pile system can also be associated with lateral 

movement of the pile. If geometric instability was the only collapse 

consideration (i.e., no material yielding), the ultimate load would 

equal the elastic buckling load Vc,. If collapse was due to plasticity 

effects only (i.e., no geometric instability), the ultimate load V 
P 

would occur when a plastic hinge(s) forms and produces a plastic mech- 

anism. In general, both geometric instability and plasticity effects 

are present, and collapse occurs as an interaction of these two effects. 

The resulting lateral mechanism load, sometimes called inelastic 



buckl ing ,  i s  lower than e i t h e r  t h e  e l a s t i c  buckling load o r  t h e  p1ast:i.c 

mechanism load Vp., 

, . This  concept w i l l  be i l l u s t r a t e d  us ing  the,schem.at ic  example of  a  

p i l e  shown i n  F i g .  5 .5 (a ) .  The p i l e  i s  loaded wi th  an e c c e n t r i c a l l y  

appl ied  a x i a l  load and has a  l a t e r a l  r e s t r a i n t ,  represent ing  t h e  abut -  

ment, a t  t h e p i l e  head. Idea l i zed  m a t e r i a l  p r o p e r t i e s  f o r  t h e  p e r f e c t l y  

e l a s t i c  case  'and t h e  r i g i d ,  p e r f e c t l y  p l a s t i c  case a r e  shown i n  F ig .  5 . 5 ( b ) .  

 he f a i l u r e  modes and load-displacement curves f o r  each case  a r e  i l l u s -  

t r a t e d  i n  F i g s .  5 .5 (c )  and (d ) .  The f a i l u r e  ioad f o r  the  p e r f e c t l y  

e l a s t i c  case  i s  equal  t o  t h e  e l a s t i c  buckl ing  load f o r  a  c o n c e n t r i c a l l y  

loaded p i l e ;  The e c c e n t r i c i t y  e  of t h e  load produces t h e  beam-column- 

type  behavior a s  i l l u s t r a t e d  i n  F ig .  5 .5(d) .  The f a i l u r e  load f o r  t h e  

r i g i d ,  p e r f e c t l y  p l a s t i c  case i s  equal  t o  t h e  load requi red  t o  form a  

p l a s t i c  h inge  i n  t h e  p i l e .  The moment a t  t h e  t o p  M' is t h e  f u l l  p l a s t i c  
P  

moment capac i ty  of t h e  p i l e  reduced by a x i a l  load e f f e c t s .  F ig .  5 .5 (e )  

shows t h e  load-displacement curves f o r  both  of  t h e  i d e a l i z e d  cases .  

A s  mentioned e a r l i e r ,  both geometric and m a t e r i a l  e f f e c t s  i n t e r a c t  such 

t h a t  t h e  a c t u a l  load-displacement behavior  i s  s i m i l a r  t o  t h a t  i l l u s -  

t r a t e d  i n  F ig .  5 . 5 ( e ) .  The o b j e c t i v e  of t h e  f i n i t e  element approach 

descr ibed  i n  Chapter 4 i s  t o  p r e d i c t  t h i s  behavior .  The des ign  methods 

descr ibed  i n  t h i s  chapter  a r e  not  intended t o  have t h e  c a p a b i l i t y  of 

p r e d i c t i n g  t h i s  complete curve. However, a  reasonable ,  and conse rva t ive ,  

e s t ima te  t o  t h e  u l t ima te  load VU can be obta ined  us ing  t h e  Rankine equa- 

t i o n  r5.3, 5 .41.  



This equation combines both geometric and material instabilities (in- 

elastic buckling). 

5.3.2.3. Elastic Buckling Load 

The elastic buckling load for a pile V can be calculated using 
C r 

nondimensional graphs developed by Davisson [5 .5 ] ,  Reddy and 

Valsangkar f5.61, and Toakley [5.7]. The design model (Fig. 5.la) 

will be approximated by the models shown in Fig. 5.6(a) and (b) for 

which the nondimensional solutions were developed. These models are 

laterally supported by elastic springs with a stiffness k h' 

Figure 5.6(a) represents an initially straight pile along which no 

vertical load transfer occurs; that is, there are no vertical springs 

along the pile and the pile axial load is constant. For this case 

Figs. 5.7 and 5.8 can be used to obtain nondimensional buckling coef- 

ficients V' and U', from which the buckling load can be calculated. For 

soils with a constant lateral stiffness kh the buckling load is given by 

- U'EI 
"cr 

- - 
R~ 

where I is the moment of inertia of the pile and 

R = relative stiffness factor 

L Q = -  
max R 



For soils with a linearly varying kh, the buckling load is given by 

V ' E I  v = -- 
C r T~ 

where 

T = relative stiffness factor 

z - L 
max - T 

The boundary conditions used in this section are illustrated in 

Fig. 5.9. Even though the bottom of the pile could conceivably he 

idealized as laterally free, a laterally restrained boundary condition 

seems to better describe the elastic buckling case. Analyses with the 

finite element program and Ref. [5.5] suggest that this is so because 

the controlling buckling lobe forms near the top of the pile, in the 

region of the eccentricity. The theoretical elastic buckling solution 

implies that a free bottom will displace laterally; this was not observed 

in any cases. For the top of the pile, either the pinned case or the 

fixed, no translation case will be appropriate for an integral abutment 

bridge. Figures 5.7 and 5.8 show the effect that boundary conditions 

at the head of the pile have on the elastic buckling load. Considering 

that there is uncertainty in the buckling analysis and that no curves 

are given for the fixed, no translation case, it is appropriate to use 

the following approximations in place of Figs. 5.7 and 5.8: 



Pinned head 2.0 2.3 

Fixed head 2.5 4.15 

The values for the fixed head are taken from Fig. 5.10 for the constant 

axial load case (9 = 0) and apply only for piles where zmax or 2 are max 

greater than four. 

The assumption that the axial load is constant along the pile is 

only true for short piles or for stiff end-bearing piles [5.3]. For 

other piles vertical load transfer occurs along the pile as illustrated 

in Fig. 5.6(b) and, therefore, the axial load varies with depth. This 

nonlinear variation of axial load is schematically illustrated in 

Fig. 5.6(c). The linear variation which is assumed in order to solve 

the governing buckling equations is also shown in Fig. 5.6(c) and given 

by the equation 

where V is the axial load at any depth x, V is the axial load at the 
X 

pile head, and $ is a coefficient which represents the rate of decrease 

in axial load between the pile head and pile tip. The linear approxima- 

tion matches the actual only at the top and bottom. Other variations 

could have been chosen, for instance, a linear variation which is 

tangent to the actual variation at the pile head. However, the assumed 

linear variation should give conservative results for the elastic 

buckling load. From Eq. (5.10) the axial load at the pile tip is equal 

to V(l - $). Following the analysis in Sec. 5.3.1, the axial load at 



the pile tip is equal to the force in the point spring, that is, k times 
q 

the pile tip displacement from Eq. (5.2) for x = L. Equating these two 

expressio,ns.for the axial load at the pile tip gives 

or, $ can be obtained by 

Figure 5.10 is used to obtain a set of nondimensional buckling 

coefficients which take into account the axial load transfer along the 

pile. These coefficients are used in Eqs. (5.7) and (5.8), as before. 

Figure 5.10 can only be used for piles where zmax or Qmax are greater 

than or equal to four. As discussed for the uniform axial load case, 

the pinned-bottom condition is appropriate. The elastic buckling load 

is increased substantially by considering axial load transfer. 

5.3.2 .4 .  Plastic Mechanism Load 

In order to calculate the ultimate load using the Rankine equation 

[Eq. (5.6)], the plastic mechanism load V must also be determined. 
P 

This is the load at which the pile collapses due to the formation of a 

sufficient number of plastic hinges to create a mechanism. For example, 

the plastic mechanism load for the pile in Fig. 5.5(c) is given 

by 



The plastic moment capacity M is reduced to M' because of the 
P P 

presence of the compressive axial load. The value of M' depends on the 
P 

cross section of the pile. For a rectangle, M' is given by [5.8]: 
P 

where V is the compressive axial load in the pile, V is the yield load 
Y 

of the pile (F A), and F is the yield stress of the pile material. 
Y . Y 

For H-shaped sections the following approximate expressions apply 

15.91: 

Strong axis bending: 

M' = M  V - < 0.15 V (5.14) 
P P Y 

Weak axis bending: 

M' = M V - < 0.4 V (5.16) 
P P Y 

The plastic mechanism load will vary for each situation depending on 

the boundary conditions, geometry, and properties of the pile, and on 

the properties of the soil. 

5.3.3. Calibration--Axial Behavior 

Example problems will be presented in this section to compare the 

results obtained from the design method and the finite element program 



for problems involving the axial behavior of the soil-pile system. For 

all the examples an HP10~42 pile was used. The pile was bent about the 

weak axis and had a modulus of elasticity of 29000 ksi and a yield 

stress of 50 ksi. 

The ultimate vertical load VU is determined from a load- 

displacement diagram using the following procedures. For piles whose 

load-displacement curves exhibit a definite maximum load, this maximum 

load is taken as the ultimate load. For all other piles, a line with 

a slope of AE/L is drawn through the origin of the load-displacement 

curve. A second line, which intersects the settlement axis at 

(0.15 + O.lb) inches, is drawn parallel to the first line. The value 

b is the diameter or width of the pile in feet. The intersection of 

the second line and the load-displacement curve gives the ultimate 

vertical load 15.10, 5.111. 

To illustrate the slip mechanism, a 40-ft-long, axially loaded 

pile was used. The properties of the soil are listed in Fig. 5.11 and 

are typical values from Chapter 3 for stiff clay. The load-displacement 

curve for this pile is also shown in Fig. 5.11. The axial stiffness 

and ultimate vertical load calculated using the design method, Eqs. (5.4) 

and (5.5), agree quite well with the finite element results. 

The lateral mechanism, as predicted by the Rankine equation, was 

checked using the 40-ft-long, eccentrically loaded pile shown in 

Fig. 5.12. Figure 5.12(a) shows the pile with a vertical pinned support 

at the pile tip and with lateral springs only (no vertical springs). 

This configuration was used with values of e of 1 in. and 2 in. In 

Fig. 5.12(b) vertical springs were added and the vertical support at 



t h e  p i l e  t i p  removed. For t h i s  case ,  e was taken a s  2 i n .  The s o i l  

p r o p e r t i e s  t h a t  were used a r e  given i n  Table 5.1.  Even though t h e  s o i l  

t ypes  wi th  parameters 1/5 t h e  va lues  of s o f t  c l ay  and loose  sand a r e  

somewhat u n r e a l i s t i c ,  they  were used i n  order  t o  check t h e  Rankine 

equa t ion  f o r  a g rea t e r  range of va lues .  Note t h a t  c l ay  i s  approximated 

a s  having a uniform l a t e r a l  s o i l  s t i f f n e s s ,  whereas sand i s  approximated 

a s  l i n e a r l y v a r y i n g .  A l a r g e v a l u e  f o r f  w a s u s e d f o r a l l c l a y s o i l s  max 
,' . .  , , . ., . . 

, ,. :, 
. , 

: t o  i n s u r e  t h a t  t h e  s l i p  mechanism would not  occur i n  F ig .  5.12(b)., 

Table 5 . 2  g ives  t h e  f i n i t e  element r e s u l t s  f o r  VU, a s  well  a s  t h e  va lues  

of V and Vcr from t h e  des ign  method (Eqs. 5 .7 ,  5 . 8 ,  5 .9,  and 5.121, 
P 

f o r  s e l e c t e d  combinations of s o i l  types ( T a b l e 5 . 1 )  and suppor t  condi- 
> .,. 

t i o n s  (Fig.  5.12). Typical  load-displacement curves f o r  t h e  case  wi th  

v e r t i c a l  spr ings  a r e  shown i n  F ig .  5.13. These curves were obta ined  

by spec i fy ing  v e r t i c a l  displacements  a t  t h e  p i l e  head and e x h i b i t  a 

t y p i c a l  beam-column-type behavior .  The shape of t h e  curves i s  a s  

descr ibed  i n  F ig .  5 .5 (e ) .  Notice t h a t  t h e  descending branch of t h e  

curves f a l l s  most rap id ly  f o r  t h e  s o f t e s t  s o i l .  The Rankine equat ion  

and t h e  f i n i t e  element r e s u l t s  a r e  compared i n  F i g .  5 .14.  I n  t h i s  

f i g u r e  t h e  curve f o r  t h e  p i l e  w i th  v e r t i c a l  sp r ings  c rosses  t h e  curves 

f o r  t h e  o t h e r  cases ,  not  because VU i s  l e s s ,  bu t  because Vcr i n c r e a s e s  

more r a p i d l y  f o r  t h i s  case.  The Rankine equat ion g ives  conserva t ive  

r e s u l t s ,  even f o r  t h e  c l ay  wi th  parameters 1 /5  those  of s o f t  c l a y .  

However, unconservative r e s u l t s  were obta ined  when a s o i l  type  wi th  

parameters  1/50 those  of s o f t  c l a y  was used. From F ig .  5 .14  i t  can be 

seen t h a t  p l a s t i c i t y  e f f e c t s  tend  t o  dominate t h e  behavior  of p i l e s  i n  

r e a l i s t i c  s o i l  types  and t h a t  e l a s t i c  buckling i s  u n l i k e l y  t o  occur ;  



that is, the points tend to be in the upper left of the figure. In 

this region the finite element results are above the Rankine equation 

because the finite element program uses the average axial load in the 

top element and not the axial load at the top node. 

5.4.  Lateral Behavior 

The lateral behavior of the soil-pile system will be. approximated 

by a bilinear load-displacement curve similar to the one shown in 

Fig. 5.2 for axial behavior. The two parameters required to describe 

the lateral behavior are the lateral stiffness % and the ultimate 
lateral load HU. Methods for determining these parameters will be 

presented in Sec. 5.4.1  and 5 .4 .2 ,  respectively. 

5.4.1 .  Lateral Stiffness 

The response of a pile to lateral loads can be described by the 

differential equation 

in which represents the lateral deflection of the pile, and p repre- 

sents the soil reaction on the pile (force per unit length). The 

relationship between the soil reaction and the lateral deflection is 

given by 



For this study, k will be assumed to be either constant with depth or h 

linearly varying with depth. Substituting Eq. (5.19) into Eq. (5.18) 

yields the differential equation for the deflection of a laterally 

loaded pile. 

Various solutions for Eq. (5.20) have been obtained for free-headed 

(zero moment) and fixed-headed piles, and for soil with either a 

constant k or a linearly varying kh. From these solutions, the h 

lateral stiffness at the pile head KL can be determined. For soil 

with a constant kh the following two equations apply [5.12, 5.131: 

For a free-headed pile 

For a fixed-headed pile 

where Y and I are nondimensional coefficients from Fig. 5.15 and 
Qq P 

Q = L/R .  For values of Q greater than five, use R equal to max max max 

five. For soil with a linearly varying k the following apply 15.141: h' 

For a free-headed pile 



For a fixed-headed pile 

where A and F are nondimensional coefficients from Fig. 5.16 and 
Y Y 

z = LIT. For values of z greater than ten, use z equal to ten. max max max 

5.4.2. Ultimate Lateral Load 

The ultimate lateral load H on the pile depends on the plastic u 

moment capacity of the pile M the ultimate lateral soil resistance 
P' 

put the eccentricity of the load above the ground surface e, the 

embedded length of the pile L, and the boundary conditions. The 

five lateral failure modes that the pile can undergo are illustrated 

in Figs. 5.17 and 5.18. The soil reaction distributions shown in these 

figures are based on the assumption that the pile moments are sufficient 

to develop fully the ultimate soil resistance p [5.3]. Given the u 

soil reaction distributions, expressions for determining the maximum 

lateral load can be derived from statics. 

Relatively short piles fail in a soil failure mode as shown in 

Fig. 5.17(a) for free-headed piles (no restraints), and in Fig. 5.18(a) 

for fixed-headed piles (moment restraint). For these piles, the soil 

along their entire length fails, while moments in the pile remain less 

than the plastic moment. For the free-headed case, HU can be determined 

from 



for a constant pU and from 

for a linearly varying pU. The value puL represents the value of pU at 

a depth L below the surface. For the fixed-headed case, HU is given by 

for a constant pU and by 

for a linearly varying pU. Intermediate length piles with a fixed head 

fail in a combined soil and pile failure mode, as can be seen in 

Fig. 5.18(b). In this case the soil fails along the entire length of 

the pile and a plastic hinge forms at the pile head. Expressions for 

determining HU are, for constant and linearly varying pU, respectively 

Longer piles fail in a pile failure mode. Figure 5 . 1 7 ( b )  illustrates 

this failure mode for a free-headed pile. At failure, a plastic hinge 



has formed i n  t h e  p i l e ,  and a l l  t h e  s o i l  above t h e  hinge has f a i l e d .  

S o i l  below t h e  hinge i s  not  a c t i v a t e d  i n  t h e  r i g i d ,  p e r f e c t l y  p l a s t i c  

mechanism. HU i s  given by 

f o r  t h e  cons tant  p case  and by u 

f o r  t h e  l i n e a r  pu case ,  where L2 = 2Hu/pUL2. Equations (5.34) and 

(5.35) must be solved i t e r a t i v e l y  using t h e  d e f i n i t i o n  of L2. The 

va lue  p represents  t h e  va lue  of p a t  a depth L2 below t h e  s u r f a c e .  
uL2 U 

F i g .  5 .18 (c )  represents  t h e  p i l e  f a i l u r e  mode f o r  a fixed-headed p i l e .  

Two p l a s t i c  hinges form i n  t h e  p i l e  and t h e  s o i l  between t h e  h inges  

has f a i l e d .  H i s  determined from 
U 

f o r  a cons t an t  p and from u 

f o r  a l i n e a r l y  varying p . u 



5.4.3. Calibration--Lateral Behavior 

Examples comparing the results from the design method with results 

from the finite element program will be given in this section. The 

pile type and pile material properties are as given in Sec. 5.3.3. The 

soil properties are tyyical values from Chapter 3 for medium sand and 

stiff clay and are given in Fig. 5.19 through 5.24. The length of the 

pile will be varied to illustrate the different failure modes described 

above. 

Of the lateral failure modes given in Sec. 5.4.2, the two pile 

failure modes (Fig. 5.17b and 5.18~) will control for almost all practi- 

cal cases. Results for these two modes are presented in Figs. 5.19 and 

5.20. These figures show load-displacement curves for a 40-ft-long 

laterally loaded pile, bending about the weak axis, for both fixed- 

headed and free-headed cases. Figure 5.19 represents the case where 

p is a constant, while Fig. 5.20 has a linearly varying pU. The u 

lateral stiffness of the soil-pile system is also shown in both figures. 

As can be seen from the figures, there is good agreement between the 

design method results and the finite element results in Fig. 5.19. 

However, in Fig. 5.20 the design method gives smaller values for the 

lateral stiffness and lower ultimate loads than the finite element pro- 

gram. These differences are caused by the stepwise variation of kh and 

pU used in the finite element program, whereas the design method assumes 

a linear variation. For both cases shown in Fig. 5.20 the design method 

does give conservative results. Notice that large lateral displacements 

are required to fully develop the ultimate lateral load. 

Load-displacement curves for the other lateral failure modes are 

given in Fig. 5.21 through 5.24. Results for the soil and pile failure 



mode (Fig. 5.18b) for an 80-in.-long pile are shown in Fig. 5.21(a) for 

a constant p and in Fig. 5.23(a) for a linearly varying pU. Results u 

for the soil failure mode (Figs. 5.17a and 5.18a) for a 40-in.-long pile 

and a constant p are presented in Fig. 5.21(b) for the free-headed u 

condition, and in Fig. 5.22 for the fixed-headed condition. The soil 

failure mode with a linearly varying p is illustrated in Fig. 5.23(b) u 

for the free-headed condition and in Fig. 5.24 for the fixed-headed 

condition. These four figures all show reasonably good agreement between 

the design method results and the finite element results. As before, 

the agreement for the cases with a constant k and p is better than h u 

the agreement for the cases with linearly varying parameters. 

5.5. Combined Behavior 

In the previous sections the effects of separately applied axial 

and lateral loads and displacements on the design model have been 

discussed. Equations for stiffness and ultimate load have also been 

presented. Now, the behavior due to the combined application of these 

effects will be analyzed. Specifically, the behavior due to a lateral 

displacement and a vertical load at the pile head will be discussed. 

As an example, consider the pile in Fig. 5.25. Note that the slip 

mechanism is eliminated here by the bottom support. The pile is first 

given a horizontal displacement A to simulate the movement of the bridge 
h 

superstructure due to a temperature change. If this movement is suf- 

ficiently large, a plastic hinge may form near the top of the pile at a 

distance L from the ground surface. An axial load V, representing the 2 



live load on the bridge, is then applied to the pile. As V increases, 

a plastic hinge eventually will form in the pile even for soft soils. 

The moment at the plastic hinge becomes smaller as the axial load 

increases. The plastic moment M' can be calculated from Eqs. (5.13) 
P 

through (5.17). The load-displacement behavior of the pile is illus- 

trated schematically in Fig. 5.5(e). The figure, which was originally 

developed for a pile with an eccentrically applied axial load, shows 

the actual curve bounded by the curves for V and Vcr. This suggests 
P 

that the same relationship used to relate VU, V and Vcr for axial 
P' 

loading might also be used for piles with combined loading. This is 

the approach that will be taken in the next section to determine the 

ultimate load of a pile. 

5.5.1. Ultimate Load for Combined Behavior 

The combined behavior of the pile is similar to the axial behavior 

described in Sec. 5.3.2 in that the pile can fail either by slipping 

through the soil or by deflecting laterally. The slip mechanism again 

occurs due to failure of the soil, while the pile remains relatively 

undeformed. The ultimate load for the slip mechanism is the same as 

before and is given by Eq. (5.5). The lateral mechanism occurs when 

the pile deflects laterally due to the interaction of geometric in- 

stability and plasticity effects. consistent with the procedure used 

in Sec. 5.3.2.2, the Rankine equation (Eq. 5.6) will be used to esti- 

mate the ultimate load for the lateral mechanism. Values for the elastic 

buckling load and the plastic mechanism load, which are required for the 

Rankine equation, can be determined from the following two sections. 



5 . 5 . 2 .  Elastic Buckling Load 

The elastic buckling load for initially bent columns approaches 

the elastic buckling load for straight columns, providing the initial 

imperfections are relatively small [ 5 . 4 ] .  Following this same rationale, 

the elastic buckling load for a pile with a lateral pile head displace- 

ment will be calculated using the expressions presented in Sec. 5 . 3 . 2 . 3  

for straight piles. An example demonstrating the validity of this 

assumption is shown in Fig. 5 . 2 6 .  A 40-ft-long pile, as in Fig. 5 . 2 5 ,  

with elastic pile and soil properties was analyzed using the finite 

element program with values of of 1 and 2 in. As can be seen from 

the figure, the displacements of the two piles differ somewhat, but the 

critical load Vcr is the same. 

5 . 5 . 3 .  Plastic Mechanism Load 

The plastic mechanism load V is the load which causes a 
P 

complete mechanism to form assuming rigid, perfectly plastic behavior. 

The value V will be derived using the pile shown in Fig. 5 .27 .  The pile 
P 

head in this figure is first displaced from point a to point b because 

of the expansion/contraction of the bridge superstructure. This movement 

causes a plastic hinge to form at a depth L below the surface. 2  

(Remember, the pile is rigid, and perfectly plastic!) When the vertical 

load V is applied, the pile head moves to point c. This results in a 

second hinge forming at a distance L below the first hinge. It is 
1 

important to note that two plastic hinges must form when rigid, perfectly 

plastic behavior is assumed. This does not mean that two hinges form in 

the real pile at the ultimate load. In general, the second hinge forms 

only at a very large displacement. 



The change l o  external work a~id lr~tertial energy caused by the ~ L L C  

head moving from b to c can be expressed in the following equation for 

a soil with a constant p : u 

Simplifying and solving for V gives 

where !2 = L1 + L2. The mechanism begins at y equal zero, which corre- 

sponds to the point V in Fig. 5.5(e) 
P 

The location of the plastic hinges, that is, L1 and L are, in a typi- 2 '  

cal problem of this type, selected to minimize the mechanism load. This 

leads to a negative value of L which is a physically unattractive 2 

solution (a plastic hinge occurring at a pinned end.) In lieu of this 

approach, each term on the right of Eq. (5.40) will be bounded by a 

conservative estimate. In the first term, L is taken as much larger 1 

than L2.  This is a small approximation since L is usually small. In 2 

the second term, L will be assumed to be small with respect to L2. 1 

This is not true but is certainly conservative; that is, it gives a 

lower bound to the second term. Next, L will be assumed to be 2 



' wi, which is the depth to the plastic hinge when fhere is no axial 
load as for Eq. (5.33). Equation (5.40) thereby reduces to 

Similar derivations can be made for piles with linearly varying 

pu. Due to the simplifying approximation made pu drops out of these 

eguztions for V . Therefore, V for pinned-headed piles with either 
P P 

constant or linearly varying p is given by Eq. (5.41). Similarly, 
U 

for all fixed-headed piles the following equation can be derived: 

The effect of vertical springs on V can be accounted for by using 
P 

a reduced value of V in the expressions for M' (Eqs. 5.13 through 5.17). 
P 

The value of V at the hinge location, for example, at L2, could be used 

from Eqs. (5.10) and (5.11). This will result in a larger value of M' 
P 

at the plastic hinges and reduce some of the conservatism in the design 

method. 

5.5.4. Calibration--Combined Behavior 

The examples run to check the combined behavior have configurations 

identical to those in Fig. 5.12, except that the pile head is now given 

a lateral displacement A instead of having an eccentrically applied h 

load. Also, one case is run with the pile head fixed against rotation. 

As before, a 40-ft-long HP10x42 pile, bent about the weak axis with a 

modulus of elasticity of 29000 ksi and a yield stress of 50 ksi, is 



used. The soil properties used are given in Table 5 . 1 .  Table 5 . 3  

gives the finite element results for VU, as well as the design method 

results for V and V (Eqs. 5 . 7 ,  5 . 8 ,  5 . 9 ,  5 . 4 1 ,  and 5 . 4 2 ) .  The Vu 
P c r 

values for 115 soft clay are very unstable. This occurs because of the 

rapidly descending branch of the load-displacement curve after the ulti- 

mate load is reached. The Rankine equation and the finite element results 

are compared in Fig. 5 . 2 8 .  As was true for the axial load only examples, 

the Rankine equation gives conservative results, although there is a 

much wider scatter of points than for the axial load case. As described 

in Sec. 5 . 5 . 3 ,  the plastic mechanism load is conservative because of 

the conservative estimates used in bounding Eq. ( 5 . 4 0 )  to obtain the 

simplified Eq. ( 5 . 4 1 ) .  The method is particularly conservative for the 

case with vertical springs, that is, when the axial load varies along 

the pile length. As noted in Sec. 5.5.3,  the reduced axial load at the 

hinge locations would increase the plastic moment capacity. This cor- 

rection was not used in Fig. 5 .28 .  

5 . 6 .  Applications of the Design Method 

The bridge superstructure will expand and contract with changes 

in temperature. Methods for determining the change in temperature are 

presented in Sec. 5 . 6 . 1  along with equations for calculating the lat- 

eral pile head displacement and the maximum bridge length. Sec. 5 .6 .2  

presents a summary of the design method developed in this chapter. 

5 . 6 . 1 .  Actual Temperature Changes 

The lateral displacement of a pile due to a change in temperature 

can be determined from 



where a is the coefficient of thermal expansion for the material in the 

bridge superstructure, Lb is the length of the bridge, and AT is the 

average temperature change. The AASHTO code gives values of a and AT as 

a = 0.000006/°F normal weight concrete 

= 0.0000065/°F structural steel 

ATave 
= 60° F moderate climate, metal structures 

= 75O F cold climate, metal structures 

= 35O F moderate climate, concrete structures 

= 40" F cold climate, concrete structures 

For concrete bridges in climates similar to Iowa's, a possibly better 

estimate of AT is to calculate the change in length from dawn on the 

coldest day of the year to dawn on the hottest day of the year and 

then add the estimated change in length during the hottest day of the 

year. This temperature change is given in the following equation i5.171. 

where TI is the air temperature at dawn on the hottest day of the year, 

T is the air temperature at dawn on the coldest day of the year, and T3 
2 

is the maximum air temperature on the hottest day of the year. Another 

method for determining AT, which is based on extensive empirical data, 

is given in Ref. [5.18].  The maximum length of the bridge can now be 

determined from Eq. (5.43) 



where % is the largest lateral displacement which does not cause a 
reduction in the ultimate vertical load of the pile. 

5 . 6 . 2 .  Summary of the Design Method 

In the previous sections of this chapter a simplified design 

method has been presented for analyzing piles in integral abutment 

bridges. The purpose for developing this method was to predict the 

change in the ultimate load capacity of a pile due to lateral pile 

head displacements, and, thereby, determine the maximum allowable length 

for bridges with integral abutements. Two failure mechanisms are pos- 

sible: the slip mechanism and the lateral mechanism. The ultimate 

load for the slip mechanism can be determined from Eq. ( 5 . 5 )  and does 

not depend on the lateral displacement of the pile. The ultimate load 

for the lateral mechanism can be determined from Eq. ( 5 . 6 ) .  This load 

does depend on the lateral displacement, since V (Eqs. 5 . 4 1 ,  5 .42 )  
P 

decreases with increasing A The ultimate load for the pile is the h' 

smaller of the two mechanism loads. The slip mechanism will tend to 

control for friction piles with relatively small 41 values. The lateral 

mechanism will tend to control for end-bearing piles and for friction 

piles with large A values. As long as the slip mechanism controls, h 

the ultimate load in the piles will be unaffected by the Ah. If the 

lateral mechanism controls, then the design of the piles may need to 

be modified in order to use integral abutments. Anticipated values 

for % can be calculated from equations in Sec. 5.6 .1 .  



6. PILE BEHAVIOR IN INTEGRAL ABUTMENT BRIDGES 

6.1. Steel Piles in Nonskewed Bridges 

6.1.1. Friction and End-bearing Piles 

In the previous report the ultimate load-carrying capacity of 

friction piles embedded in typical Iowa soils was studied 16.11. In 

the present work these cases have been reinvestigated with an improved 

representation of the real soil-pile interaction. As discussed in 

Sec. 3.4, the parameter u used to construct the f-z curves has been 

changed (see Fig. 3.6). For very stiff clays the factor a ,  which is 

used to obtain the soil-pile adhesion from the given soil cohesion, has 

been reduced by almost one-half. This is, presumably, more suitable 

for steel H piles [6.2]. The soil and pile models used in the pre- 

vious work [6.l] did not include cyclic behavior. In the soil-pile 

interaction problem, the pile will take a shape similar to the solid 

line in Fig. 6.1, as the pile is subjected to the specified lateral 

BP displacement ah. As the vertical load V is applied, the pile deflects 

as illustrated by the dashed line. As can be seen, some of the soil 

springs will be subjected to load reversals (cyclic loading). Similarly, 

some of the pile moments are reversed during this loading history. With 

these changes, it was decided to recalculate the pile capacities studied 

in the previous work. 

A typical pile (HP10~42) in an integral abutment bridge with 

bending about the weak axis will be analyzed by first applying a lateral 

displacement (to simulate induced thermal expansion or contraction) and 

no rotation (since the bridge is much stiffer than the pile) at the 



pile top. Then a vertical load V (to simulate the bridge load) will 

be applied until failure occurs. In this manner, the effect of the 

horizontal pile top displacement on the pile capacity can be observed. 

Two different piles are investigated: friction piles and end-bearing 

piles. The point spring resistance in the end-bearing piles is taken 

to be large to simulate stiff rock. In the IAB2D program, the total 

displacement 4, is applied in increments of 0.5 in., while V is held 

equal to zero. Once the total 4, is achieved (0, 1, 2, or 4 in.), V 

is increased in increments of 5 kips or 10 kips until the vertical 

capacity of the pile is reached. 

Results obtained by running the IAB2D program will be presented 

here to show the behavior of a steel H pile embedded in Iowa soils. 

(Chapter 3 summarizes the soil properties.) Sets of vertical load- 

settlement curves with specified lateral displacements (see Fig. 6.1) 

for a friction pile in very stiff clay and end-bearing piles in soft 

clay and loose sand are shown in Figs. 6.2 through 6.4, respectively. 

These are typical of the other cases. The ultimate loads are defined 

by the tangent offset method described in Sec. 5.3.3. The nondimen- 

sional forms of the ultimate pile load ratio VU/VUo versus the specified 

lateral displacement 4, for friction piles and end-bearing piles in dif- 
ferent types of Iowa soils are shown in Figs. 6.5 and Fig. 6.6, respec- 

tively. The value V represents the ultimate load when there is no uo 

induced lateral displacement. 

Figure 6.5 shows that a lateral movement of up to 4 in. has no 

effect on the vertical load capacity of frlction piles. These results 

are different from the results obtained in the previous report 16.11. 



Two primary reasons explain this difference. First, since the a factor 

(adhesion/cohesion) has been reduced in the present study (Sec. 3 . 4 1 ,  

the pile capacity, as limited by friction, has been reduced. Hence, 

this slip mode will tend to control even though may be large. The 

slip mode is not affected by lateral displacements. Second, since the 

cyclic model was introduced into the pile stress-strain relation, the 

moment-curvature relations of the pile are no longer path independent. 

Figure 6.7(a and b) shows the moment-curvature relation and path 

for loading and unloading of the noncyclic 16. l ]  and cyclic model (cur- 

rent work), respectively. The unloading paths are significantly dif- 

ferent, that is, different tangent stiffnesses and moment vs. curvature 

results. The load-deflection curves will be significantly different 

for these two cases. 

Figure 6.8 shows the load-settlement curves for the cyclic and 

noncyclic model in very stiff clay with a specified lateral displace- 

ment of 1 in. Notice that the collapse load for very stiff clay is 

nearly the same for both cases even though the two models travel 

different load-displacement curves. This observation fits a more 

general theorem of plastic design which states that the mechanism 

collapse load of a frame is independent of any residual stresses which 

may be present in the unloaded structure, whether these are caused by 

welding, imperfect fit of members, or support settlement. In all of 

these cases, a complete mechanism will be formed eventually [6.3]. The 

theorem assumes the system has unlimited ductility. However, as illus- 

trated by Fig. 6.8, the mechanism may form at quite different levels 

of displacement. Hence, if the offset method is used to determine the 



ultimate load (Sec. 5.3.3), a significantly different value is obtained 

from the cyclic model than the noncyclic model. This difference was 

not anticipated in the previous work. Since the cyclic model and the 

reduced a more realistically represent the pile and soil behavior, the 

present conclusion is valid; that is, lateral displacements do not 

affect the capacity for friction piles in the Iowa soils. 

In the end-bearing piles the failure mode is dominated by the 

yield load of the pile. The slip mechanism does not occur. Fig- 

ure 6.6 (a and b) shows that the ultimate load-carrying capacity of 

the pile is reduced in soft clay and loose sand. Since the lateral 

stiffness of the soil in soft clay and loose sand is relatively small, 

the pile is permitted to deflect laterally under vertical load and the 

lateral failure mode eventually develops. For the stiff soils, the 

full yield load of the pile is developed before lateral motions are 

permitted. 

Results obtained using the design method developed in Chapter 5 

are also presented in Fig. 6.5 and 6.6. As can be seen in Fig. 6.5, 

for friction piles the design method concurs with results from the 

finite element program and predicts no reduction in the ultimate verti- 

cal load for values of 41 up to 4 in. For end-bearing piles in clay 

(Fig. 6.6a) and sand (Fig. 6.6b) both the finite element program and 

the design method predict some reduction in load-carrying capacity. 

Agreement between the two methods is good with the design method 

results being slightly conservative. Besides predicting a greater 

relative reduction in capacity due to 41, as illustrated by the non- 
dimensional plots in Fig. 6.5 and 6.6, the design method also gives 



conservative magnitudes of the capacity (Fig. 5.28). The design method 

and the finite element program use slightly different expressions for 

determining the lateral stiffness and ultimate lateral strength of the 

soil (Sec. 3.3).  This may account for some of the differences between 

the results. The design method will also tend to give conservative 

results because the equation for M' does not take into consideration 
P 

the reduction in axial load along the pile (see Sec. 5.5.3). Addi- 

tionally, conservative approximations are used to reduce Eq. (5.40) to 

Eq. (5.41). 

6.1.2. Effect of Cyclic Lateral Displacements 

Two cases are presented here to illustrate the effect of cyclic 

lateral displacements on pile capacity: friction piles in very stiff 

clay and end-bearing piles in soft clay. These are the cases most 

likely to be affected by cyclic loading. The specified lateral dis- 

placement is cyclically applied; for example, A is cycled from +1.0 in. h 

to -1.0 in. to +1.0 in. The vertical load V is then applied. 

The resultant set of vertical load-settlement curves after the 

specified cyclic lateral displacements for a friction pile in very 

stiff clay and end-bearing pile in soft clay are identical to those 

shown in Figs. 6.2 and Fig. 6.3, respectively. These results show that 

the vertical load capacity is not significantly affected by the cyclic 

lateral displacements. The effects of cyclic behavior are not included 

in the design method. 

6.1.3. Effect of Pinned Pile To2 

The condition at the pile top, which is embedded in the concrete 

abutment, depends on the relative stiffness of the superstructure and 



the abutment. The top of the pile can be assumed to be (a) fully 

restrained without rotation (fixed pile head), (b) partially restrained 

allowing some degree of rotation, or (c) pinned, allowing complete 

rotation freedom (pinned pile head). Section 6.1.1 has discussed the 

friction and end-bearing piles with fixed pile heads in very stiff 

clay and soft clay. The friction and end-bearing piles with pinned 

pile heads in very stiff clay and soft clay will be presented here. 

Figure 6.9 shows the nondimensional forms of ultimate vertical load 

ratio versus lateral specified displacements of friction and end- 

bearing piles with pinned pile heads in very stiff clay and soft clay. 

A comparison of Fig. 6.5 and Fig. 6.9(a) shows that the load capacity 

of the friction pile is not affected by the boundary condition on the 

pile top. In both cases, the failure mechanism is controlled by the 

slip mechanism. This is not true in the case of the end-bearing pile 

with fixed and pinned pile heads. The load capacity is reduced more 

in soft clay than in very stiff clay (Fig. 6.6a and Fig. 6.9b). The 

failure mechanism in both cases is controlled by the lateral mechanism, 

which is affected by the number of plastic hinges (two for the fixed 

case, one for the pinned) and the lateral soil resistance. The reduced 

lateral resistance of soft clay more easily permits the lateral mode. 

Figure 6.9 also shows results obtained using the design method. 

Both the finite element method and the design method predict no reduc- 

tion in load-carrying capacity for friction piles for values of Ah up 

to 3 in. The design method does, however, predict a small reduction 

for Ah values greater than 3 in. Figure 6.9(b) for end-bearing piles 

shows similar reductions in ultimate load for both the finite element 



program and t h e  design method. One d i f f e rence  is t h a t  t h e  des ign  

method p r e d i c t s  a  g r e a t e r  reduct ion  i n  load capaci ty  f o r  p i l e s  i n  very 

s t i f f  c l ay  than  f o r  p i l e s  i n  s o f t  c l a y ,  whereas t h e  f i n i t e  element 

program sometimes shows a  g r e a t e r  reduct ion  f o r  p i l e s  i n  s o f t  c l ay .  

6.2. Nonskewed Bridge Example 

5 .2 .1 .  Bridge Studied 

Anonskewed br idge  loca ted  a t  S t a t e  Avenue over U . S . 3 0 ,  S to ry  

County, Ames, Iowa, was chosen t o  i n v e s t i g a t e  t h e  behavior of  an i n t e g r a l  

abutment br idge  subjected t o  thermal  expansion and con t rac t ion . '  P lan  

and e l e v a t i o n  views of t h e  b r idge  a r e  shown i n  F ig .  6.10. I t  i s  a  

245-ft-long, p re s t r e s sed  concre te  br idge  with i n t e g r a l  abutments and 

p i e r s .  There a r e  no expansion j o i n t s  on t h e  br idge;  however, expansion 

j o i n t s  a r e  loca ted  i n  t h e  approach s l a b  about 20 f t  from each end of 

t h e  b r idge .  

A s e c t i o n  through t h e  b r idge  deck i s  shown i n  F i g .  6.11. Pre-  

tens ioned,  p re s t r e s sed  concre te  beams were used t o  support  a  poured-in- 

p l a c e  concre te  deck. The beams and deck were designed t o  a c t  a s  a  

monoli thic  u n i t ,  even over t h e  p i e r s .  The s t e e l  p i l e s ,  p i e r  cap, 

diaphragm, concrete  beam, and concre te  deck were a l l  r e in fo rced  t o  be- 

have a s  a s i n g l e  u n i t .  A s e c t i o n  through t h e  abutment i s  shown i n  

F ig .  6.12. The p i l e  i s  o r i e n t e d  wi th  i t s  s t rong  a x i s  along t h e  road- 

way c e n t e r  l i n e  (bending about  t h e  weak a x i s )  and i s  r e in fo rced  w i t h i n  

t h e  abutment cap and diaphragm t o  t r ansmi t  t h e  f u l l  p l a s t i c  moment of 

t h e  p i l e  (HP10x42). More d e t a i l s  about  t h e  S t a t e  Avenue b r idge  can 



be found in Iowa Department of Transportation design sheets, File 

No. 22616 and Design No. 267. 

6.2.2. Mathematical Model of the Bridge 

The proposed mathematical model of the State Avenue bridge is 

shown in Fig. 6.13(a). Two types of prestressed concrete beams, C30-50 

and C80, are used in this bridge. A simplified two-dimensional model of 

the bridge, which contains one concrete beam, a section of the abutment 

and pile cap, and one pile as shown in Fig. 6.13(b), was used. The 

cross-sectional properties have been calculated based upon this ideal- 

ization. Note also that the bridge was assumed to be symmetrical about 

the midlength. Figure 6.14 shows the section through the abutment and 

the soil profile. The granular backfill is considered as dense sand. 

The abutment pile was driven in an 8-ft deep, oversized hole through 

the fill. Voids around the pile are assumed to still be empty. The 

finite element model is shown in Fig. 6.15. Six beam-column elements, 

each 20-ft long, are used to represent the concrete beam; two beam- 

column elements, each 3.75-ft long, are used to represent the abutment 

and pile cap; and 12 elements with unequal length are used to represent 

the pile. There are no vertical soil springs along the abutment and 

the predrilled oversized hole. No lateral soil springs are attached 

within the predrilled oversized hole. Soil properties based on the 

Iowa soils are calculated. The temperature change is taken as -60" F 

to +60° F from the construction temperature (see Eq. 5.44). 

6.2.3. Numerical Results 

Several cases have been investigated in order to fully understand 

the behavior of the integral abutment bridges with thermal expansion 



and contraction. These are: (a) no thermal changes, (b) with +60° F 

temperature changes, (c) without backfill, with +60° F temperature 

changes, (d) with a complete cycle of temperature changes (-60' F to 

+60° F), and (e) without concrete bridge model, but with specified 

lateral displacements equal to the displacements in case (b). After 

each of these loadings, a vertical load is applied at the top of the 

pile until failure (Fig. 6.15). 

Vertical load-settlement curves obtained by running the IAB2D 

program are shown in Fig. 6.16. Case (e) is actually a single pile 

with an abutment attached to it, very similar to the cases in Sec. 6.1. 

It fails by the slip mechanism when the applied load exceeds the fric- 

tion force of the soil springs. The rest of the cases do not fail at 

this level, since the pile is part of the bridge model. As the pile moves 

downward, the concrete bridge beams carry some load as a cantilever 

type structure. Cases (a) and (b) have noticeably different load- 

settlement curves. In case (b) the +60° F temperature change expands 

the beams and activates the passive soil pressure~behind the abutment. 

(See diagram in Fig. 6.17.) Since the beam and abutment are not co- 

linear, a moment M and subsequent shear Vs are introduced into the 

concrete beam. The shear Vs, equal to about 20 kips in this case, 

is applied to the pile. In other words, the pile is subjected to a 

20-kips downward load before the vertical live load is applied. From 

Fig. 6.16, cases (a) and (b) do have a 20-kips difference in ultimate 

load. This is also confirmed by case (c), which is identical to case (b) 

except the backfill is removed. In this case, the initial 20-kip pile 

load is not introduced and the load-settlement curve is about the same 



as case (a). A comparison of cases (b) and (d) shows that there is no 

difference in load-settlement curves for cyclic and noncyclic thermal 

changes. 

6.3. Steel Piles in Skewed Bridges 

As illustrated in Fig. 6.18, pile orientations for steel H piles 

in integrzl abutment, skewed bridges can be classified into four types: 

the web of the pile perpendicular (Type 1) or parallel (Type 2) to 

the roadway center line, and the web of the pile parallel (Type 3) or 

perpendicular (Type 4) to the center line of the abutment. In addition, 

some states use circular piles (Type 5) in integral abutments on skewed 

bridges. In each of these types the pile is bending about its weak axis, 

strong axis, or a combination of both. Bending of piles about the weak 

axis was discussed in Sec. 6.1. Before proceeding to an actual bridge, 

individual piles displaced laterally about the strong axis and at 45' to 

the strong and weak axis will be studied. 

6.3.1. Bending about the Strong Axis 

For H piles bent about the strong axis (displaced along the weak 

axis), the analysis procedure is the same as in Sec. 6.1.1, except the 

pile cross-sectional properties are rotated 90'. The two-dimensional 

program IAB2D can still be used for this case. A set of nondimensional 

curves of the ultimate pile load ratio (VU/VUo) versus the specified 

lateral displacement (Ah, in the direction of the weak axis), for fric- 

tion and end-bearing plles in different types of Iowa soils, are shown 

in Figs. 6.19 and 6.20, respectively. The pile heads are fixed against 

rotation in these figures. 



Figure 6.19 shows that a lateral movement of up to 4 in. has no 

effect on the vertical load capacity for friction piles. This is not 

true for end-bearing piles, since the failure mode is dominated by the 

yield load of the pile. The slip mechanism does not occur. Fig- 

ure 6.20(a) shows that end-bearing piles with a fixed pile head and 

bending about the strong axis have a significantly reduced ultimate 

load capacity in very stiff clay. 

Figure 6.21 shows the vertical load-settlement curves of end- 

bearing piles with fixed pile head displaced 4 in. laterally for soft 

clay, stiff clay, and very stiff clay. These curves show that the 

peak load (point of zero slope) for very stiff clay is greater than for 

stiff clay, which is greater than for soft clay. As mentioned in 

Sec. 6.1.1, the peak load is not affected by the residual stress effects, 

in this case, plastic hinges formed by the lateral motion. However, as 

Fig. 6.21 clearly shows, residual stresses do affect the load-settlement 

curve. For the very stiff clay displaced 4 in. laterally, two plastic 

hinges formed in the pile. For soft clay and stiff clay only one 

plastic hinge formed. This plastic hinge formation does significantly 

affect the load-settlement curve of the very stiff clay pile; the tangent 

stiffness is noticeably reduced at point A in Fig. 6.21. Hence, the 

ultimate load for the very stiff clay case, as determined by the offset 

displacement, is less than for soft clay and stiff clay. 

Results from the design method, which are also shown in Figs. 6.19 

and 6.20, give conservative results, as discussed in Sec. 6.1. 



6.3.2. Friction and End-bearing Piles Bending about the 45O Axis 

If pile orientations of types 3 and 4 are adopted for construction 

convenience, the thermal expansion or contraction along the roadway 

center can be divided into components paraLlel and perpendicular to the 

pile web (see Fig. 6.18). Thus, the piles in integral abutment skewed 

bridges will be subjected to biaxial bending resulting from thermal 

movement. Piles displaced at 45O from the major axes will be analyzed 

in this section to illustrate the effect of biaxial bending. The same 

loading procedure is used as in Sec. 6.3.1, except that the specified 

lateral displacement Ah is measured in a direction 45O from the principal 

axes (see Fig. 4.17). The three-dimensional computer program IAB3D is 

used to calculate the load capacities of friction and end-bearing piles. 

For friction piles, results obtained from the IAB3D program show 

that the load capacity of friction piles is not affected by applying 

the specified lateral displacement A (0, 1, 2, or 4 in.) in the 45' h 

direction for all Iowa soils, since failure is controlled by the slip 

mechanism. This agrees with the results obtained from the previous 

sections. 

The ultimate vertical load ratio for end-bearing piles with 

specified displacement A (0, 1, 2, or 4 in.) in the direction of 45' h 

axis is shown in Fig. 6.22. In this case, the load capacity of end- 

bearing piles is affected by the specified movements at the top, since 

failure is controlled by the lateral mechanism. It is interesting to 

note that the load capacity of end-bearing piles bent about the 45' axis 

is between the load capacity of end-bearing piles bent about the weak 

and strong axis (Sec. 6.1 and 6.3.1). The upper bound and lower bound 



on the load capacity of end-bearing piles can be estimated from the 

weak or strong axis bending. As an expedient solution, analysis can 

be accomplished by a simplified two-dimensional analysis. 

The design method was not developed for the biaxial bending case. 

6.3.3. Effect of Pinned Pile Top 

In this section, the effect of a pin at the pile top on friction 

and end-bearing piles bent about the strong axis will be demonstrated. 

Piles in very stiff clay and soft clay will be studied. Results 

obtained from the IAB2D show that the load capacity of the friction 

piles is not affected by the boundary condition at the pile top. In 

both cases (fixed and pinned), the failure mechanism is controlled by 

the slip mechanism. This is not true in the case of an end-bearing pile 

(compare Figs. 6.20(a) and Fig. 6.23). For pinned piles displaced 4 in. 

laterally, the tangent stiffness of the load-settlement curve in very 

stiff clay is not reduced as significantly as it was at point A in 

Fig. 6.21 for fixed piles. Hence, the vertical load capacity, as deter- 

mined by the offset method, is not noticeably reduced. 

Also shown in Fig. 6.23 are curves developed using the design 

method. Behavior similar to that described in Sec. 6.1 occurs. Again 

the design method gives conservative answers. 

6.4. Skewed Bridge Example 

In this section a skewed bridge with integral abutments is used 

to investigate the behavior of the piles under temperature changes. 

The bridge in Sec. 6.2 is used as a skewed bridge in which the skew 



angle is 30° (see Fig. 6.24). The pile orientations are classified 

into four different types as mentioned in Sec. 6.2. These foilr differ- 

ent type$ pf pile orientatipns, as shown in Fig. 6.18, will be discussed 

here. 

Since the same bridge is used in this example, the properties of 

prestressed concrete beams, abutments, piles, and soil. profiles are 

the same as in Sec. 6.2. The mathematical model for this skewed bridge 

is also similar to the one used in Sec. 6.2, except that a three- 

dimensional model is required to account for the effect of the skew. 

This three-dimensional model includes a concrete beam, abutment, and 

pile. Only one-half of the bridge in this model is analyzed by taking 

advantage of the symmetry about the midline of the bridge. The global 

coordinates as shown in Fig. 6.24 are selected to impose the symmetry 

requirement. Rotations about the global X-axis at the abutments and 

piers are considered to he restrained because of the diaphragm under- 

neath the concrete beam. 

Four types of pxle orientations in the abutment are considered and 

are loaded with the following cases: (a) without thermal changes, 

(b) with +60° F temperature changes, and (c) without bridge beam and 

with A for +60° F temperature changes. Results obtqined from the 
h 

IAB3D program show that there is no significant difference in the 

load-settlement curves for different pile orientations, that is, the 

load-settlement curves will not be affected by the pile orientations 

(see Fig. 6.25). This agrees with the results in the previous sections 

which indicate that bending about weak, strong, and 45O axes do not 

affect the vertical load capacity of friction piles which fail by the 



slip mechanism. As in the two-dimensional case, as the applied load 

exceeds the pile friction resistance, the excess load will be carried 

by the concrete beams as a cantilever type structure. Hence, case (a) 

continues to carry an increasing load beyond case (c). Cases (a) and 

(b) have a noticable difference because of the pile pre-load induced 

by the thermal expansion, as illustrated in Fig. 6.17. 

The deflected shape of the skewed bridge (in the plan view) after 

thermal expansion is also shown in Fig. 6.24. If the soil springs 

acting on the abutment in the tangential direction, which represent the 

friction resistance of the backfill, did not exist, the bridge would 

move toward the upper right. 

6.5. Timber and Concrete Piles 

Piles are available in a variety of sizes, shapes, and materials 

to suit many special requirements, including economic competition. Piles 

can be classified by the principal materials of which they consist, for 

example, timber, concrete, and steel piles. Steel H piles have been 

discussed in Secs. 6.1 and 6.3. Circular timber and concrete piles 

will be investigated in this section. 

Timber piles are probably the most commonly used type. Under many 

circumstances, they provide dependable, economical foundations. Their 

length is limited by the height of available trees; piles 20- to 40-ft 

long are common, but longer ones cannot be obtained economically in all 

areas. 

Since concrete piles were initially used shortly before 1900, 

several types of concrete piles have been devised. Today an engineer 



may choose those best suited to a particular project. Concrete piles 

may be divided into two principal categories, cast-in-place and precast 

piles. The cast-in-place piles may be further divided into cased and 

uncased piles. 

A Douglas fir timber pile and a cast-in-place concrete pile, both 

1-ft diameter and 20-ft long, will be investigated here. Table 6.1 

shows the material properties of timber and concrete piles f6.41. 

The stress-strain relationship of the timber pile can be represented 

by the modified Ramberg-Osgood cyclic model. For concrete piles, rein- 

forcing bars are used to resist the tensile force for the internal moment. 

The beam element in the current program does not have the capability of 

modeling the post-cracking behavior of reinforced concrete piles. The 

representation at the bond/anchorage/cracking behavior of reinforced 

concrete is a complex phenomenon which has not been completely solved 

by state-of-the-art methods. The scope of this project did not permit 

incorporation of such behavior. In addition, since the pile is pre- 

domlnately in axial compression, the compression characteristics of 

the material will dominate. The compression stress-strain relation of 

the concrete pile is idealized by the modified Ramberg-Osgood cyclic 

model. 

Using the same procedure as in Sec. 6.1.1, results indicate that 

the vertical load capacity of timber and concrete friction piles with 

fixed pile heads in six types of Iowa soils is not reduced by a lateral 

movement of up to 2 in. The failure for both timber and concrete fric- 

tion piles with vertical loads is by the slip mechanism. Point bearing 

timber and concrete piles are not analyzed. The results obtained using 



t h e  des ign  method a l s o  show no reduct ion  i n  load  capac i ty  f o r  timber 

and concre te  f r i c t i o n  p i l e s  with l a t e r a l  displacements  of up t o  2 i n .  

A s  descr ibed  above, t h e s e  ana lyses  a r e  based upon a   am berg-0sgood 

rep resen ta t ion  of t h e  timber and concre te  m a t e r i a l s ,  which impl ies  

unl imited d u c t i l i t y .  This i s  not  n e c e s s a r i l y t r u e .  Hence, t h e  above 

conclusion t h a t  , t h e  capaci ty  of a  f r i c t i o n  p i l e  is unaffected by l a t e r a l  

displacements  of up t o  2 i n .  w i l l  be t r u e  only i f  t h e  p i l e  has t h e  

. . d u c t i l i t y  t o  develop a f u l l  p l a s t i c  moment and,  subsequently,  t o  behave 

a s  a  p l a s t i c  hinge f o r  t h e  requi red  r o t a t i o n s .  The r e s u l t s  of t h e  f i n i t e  

el.ement a n a l y s i s  i n d i c a t e  t h a t ,  f o r  a  2 i n .  l a t e r a l  displacement ,  t h e  

p l a s t i c  tiinge r o t a t i o n  requfred a t  t h e  t o p  of a  p i 1 e . i ~  approximately 

0.04 radians  over  a  24-in. l eng th  i n  t imber and over  a  12-in.  l eng th  

. . 
., . .  i n  concre te .  



7. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 
FOR FURTHER STUDY 

7.1. Summary 

The states which use integral abutments in bridge design and the 

District Construction Office of the FHWA, Region 15, were surveyed to 

determine their current thinking and practice in integral abutment 

design. In Chapter 2 various policies are discussed for representive 

highway departments, and a summary of current practice by all the states 

and the FHWA is given in the Appendix. For most states the length 

limitations for integral abutment bridges have been set on the basis of 

past experience and have been increasing over the years as a result of 

satisfactory performance in actual installations. There is not a common 

set of design details used to implement integral abutment bridges. 

The parameters needed to describe the behavior of the soil are 

given in Chapter 3. Three types of soil resistance-displacement curves 

were developed: lateral, vertical, and pile tip. The parameters needed 

for each curve are the initial stiffness, the ultimate soil resistance, 

and a shape factor. Each of these curves was approximated using a modi- 

fied Ramberg-Osgood model. This model was expanded to include cyclic 

loadings. Simpler expressions for the soil parameters are presented 

for use with the design method in Chapter 5. Six typical Iowa soils 

were identified. 

An algorithm based upon a nonlinear finite element procedure was 

developed to study the soil-pile interaction in integral abutment 

bridges. The finite element idealization consists of a one-dimensional 



idealization for the pile and nonlinear springs for thefoundatioq. 

Incremental finite elements with an updated Lagrangian formulationand 

material nonlinearities were used. For the purposes of treating arbi- 

trary large rotations, node orientations were described by. unit vectors. 

Deformations were defined by the orientation of these vectors relative 

to a rigid body element coordinate system which is along the beam chord. 

The total deformation nodal forces were evaluated by numerical integra- 

tion through the cross section. Explicit forms of the tangent stiff- 

ness in the element coordinate system are presented. Updating of the 

element coordinates in three dimensions is also described. The numeri- 

cal techniques available for the solutions of thenonlinear equations 

are reviewed, and the incremental and iterative techniques used in the 

study are discussed in detail. Two computer programs (IAB3D and IABZD) 

have been developed to solve the nonlinear soil-pile interaction 

problems for both three- and two-dimensional cases. A number of 

experimental and analytical examples have been analyzed to establish 

their reliability. 

A simplified design model for analyzing piles in integral abut- 

ment bridges is presented in Chapter 5. This model grew from previous 

analytical models and observations of pile behavior.. The pile is 

described in terms of its axial behavior, lateral behavior, and 

combined axial-lateral behavior. The axial behavior was controlled by 

one of two failure mechanisms: the slip mechanism which occurred when 

the soil failed with the pile slipping through the soil and the lateral 

mechanism which occurred when the pile deflected laterally under vertical 

load. Several types of lateral behavior could occur, depending upon the 



s i z e  of p i l e ,  t h e  s o i l  p r o p e r t i e s ,  t h e  l eng th  of t h e  p i l e ,  and the  

boundary condi t ions .  For t h e  combined behavior ,  e i t h e r  t h e  s l i p  

mechanism o r  t h e  l a t e r a l  mechanism would aga in  c o n t r o l .  The s l i p  

mechanism was not  a f f e c t e d  by l a t e r a l  displacements .  The Rankine equa- 

t i o n ,  which u t i l i z e d  t h e  e l a s t i c  buckling load and t h e  r i g i d ,  p e r f e c t l y  

p l a s t i c  mechanism load ,  was used t o  determine t h e  u l t ima te  load f o r  t h e  

l a t e r a l  mechanism. The des ign  model was compared wi th  t h e  f i n i t e  element 

model r e s u l t s .  The des ign  model c o r r e c t l y  desc r ibes  t h e  e s s e n t i a l  

behaviora l  c h a r a c t e r i s t i c s  of t h e  p i l e  and conse rva t ive ly  p r e d i c t s  t h e  

v e r t i c a l  load-car ry ing  capac i ty .  One l i m i t a t i o n  of  t h e  des ign  model 

was t h a t  only one type  of  s o i l  could be used throughout t h e  p i l e  depth;  

t h a t  i s ,  layered s o i l s  could not  be used. 

I n  Chapter 6 many a n a l y t i c a l  examples a r e  presented  i n  which a  

p i l e  was given a  l a t e r a l  displacement t o  s imula te  t h e  br idge  expansion. 

A v e r t i c a l  load was then  appl ied  u n t i l  f a i l u r e  occurred.  These examples 

showed t h a t  f o r  t h e  cases  s tud ied  i n  Iowa s o i l s ,  f r i c t i o n  H p i l e s  exper i -  

enced no decrease i n  load-car ry ing  capaci ty  f o r  l a t e r a l  displacements 

up t o  4 i n .  This  was t r u e  whether t h e  p i l e  was b e n t  about t h e  s t rong  

a x i s ,  weak a x i s ,  o r  45O from e i t h e r  a x i s .  This  was a l s o  t r u e  f o r  t imber 

and concrete  p i l e s  d i sp laced  up t o  2 i n .  A l l  of  t h e s e  cases  f a i l e d  by 

t h e  s l i p  mechanism. However, end-bearing p i l e s  d i d  show s i g n i f i c a n t  

reduct ions  i n  load-car ry ing  capaci ty  f o r  s i m i l a r  l a t e r a l  displacements 

and f o r  bending about  a l l  t h r e e  axes.  These cases  f a i l e d  by t h e  l a t e r a l  

mechanism. Other examples showed t h a t  t h e  c y c l i c  behavior  had no e f f e c t .  

Examples with skewed and nonskewed br idges  showed no e f f e c t  on t h e  p i l e  

capaci ty  s i n c e  t h e s e  p i l e s  were f r i c t i o n  p i l e s .  However, t h e  longi-  



t u d i n a l  expansion of t h e  br idges  introduced a pre load  on t h e  p i l e  which 

reduced t h e  e f f e c t i v e  p i l e  capaci ty .  

7.2.  Conclusions 

The u l t ima te  load capaci ty  f o r  f r i c t i o n  p i l e s  was not  a f f ec t ed  by 

l a t e r a l  displacements  of  up t o  4 in .  f o r  H p i l e s  and up t o  2 i n .  f o r  

t imber and concre te  p i l e s .  This conclusion d i f f e r s  from t h a t  obtained 

i n  t h e  previous s tudy because a  smal le r  va lue  f o r  t h e  s o i l - p i l e  adhesion 

was used, and because c y c l i c  e f f e c t s  were included.  However, t h e  u l t i -  

mate load capac i ty  was s i g n i f i c a n t l y  reduced f o r  l a t e r a l  displacements 

g r e a t e r  than 2 i n .  f o r  end-bearing H p i l e s .  

A v e r t i c a l  pre load  was introduced on t h e  p i l e  by t h e  thermal expan- 

s i o n  of t h e  b r idge  a s  it pushed t h e  abutment a g a i n s t  t h e  b a c k f i l l .  

The load capac i ty  of t h e  p i l e  was thus  e f f e c t i v e l y  reduced. 

The maximum al lowable  length  f o r  br idges  wi th  i n t e g r a l  abutments 

thus  depends on whether t h e  p i l e s  a r e  f r i c t i o n  o r  end bear ing ,  a s  

well  a s  on t h e  p r o p e r t i e s  of the  s o i l  and p i l e s .  Methods f o r  de t e r -  

mining t h e  a l lowable  l e n g t h  a r e  presented i n  t h i s  r e p o r t .  These 

methods showed t h a t  t h e  cu r ren t  l eng th  l i m i t a t i o n  of  265 f t  f o r  br idges  

with i n t e g r a l  abutments i s  conserva t ive .  

I t  i s  important  t o  no te  t h a t  t h e  al lowable l eng ths  determined 

using t h e  des ign  method were based on t h e  s t r u c t u r a l  i n t e g r i t y  of t h e  

p i l e s  only.  Other  f a c t o r s ,  notably t h e  e f f e c t s  of  t h e  abutment move- 

ment on t h e  approach s l a b  and f i l l  and t h e  e f f e c t s  of t h e  induced 

a x i a l  s t r e s s e s  i n  t h e  supe r s t ruc tu re ,  must a l s o  be considered. While 



ttll,se f a c t o r s  havts ;I rcalnt i v e l y  sni,~l 1 e f fec t  o ~ t  s h o r t e r  l > r i d g c ~ + ,  . i s  

longer  br idges  with i n t e g r a l  abutments a r e  b u i l t  these  problems w i l l  

become of g r e a t e r  importance. 

7.3. Recommendations f o r  Fur ther  Study 

1) A s c a l e  model of a  p i l e  i n  an i n t e g r a l  abutment br idge  could be 

s e t  up and t e s t e d  i n  t h e  l abora to ry .  The experimental r e s u l t s  can 

be  compared t o  t h e  r e s u l t s  obtained from t h e  a n a l y t i c a l  and 

s i m p l i f i e d  design methods. 

2) An a c t u a l  bridge could be instrumented t o  monitor thermal  move- 

ments and p i l i n g  s t r e s s e s  during temperature changes. 

3 )  A s tudy of the  b a c k f i l l  and the  approach s l a b  under c y c l i c  

thermal movements would determine t h e  most s u i t a b l e  type  of 

approach s l a b  t o  be used with t h e  i n t e g r a l  abutment type  of 

br idges .  

4 )  The design method could be r e f ined  by including t h e  e f f e c t s  of 

a x i a l  load t r a n s f e r  and d i f f e r i n g  s o i l  types i n  t h e  c a l c u l a t i o n  

of t h e  p l a s t i c  mechanism load.  

5 )  A s tudy of the  e f f e c t s  of t h e  p i l e  preload caused by t h e  thermal  

expansion of t h e  br idge  i s  needed. 

6) The e f f e c t s  of t h e  abutment movement on the  approach s l a b  and f i l l  

and t h e  e f f e c t s  of t h e  induced a x i a l  s t r e s s e s  i n  t h e  s u p e r s t r u c t u r e  

need f u r t h e r  cons idera t ion .  
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Part 1. Integral Abutment Bridge Questionnaire 
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Different States 



PART 1. INTEGRAL ABUTMENT BRIDGE QUESTIONNAIRE 

1. Do you r o u t i n e l y  c a l c u l a t e  t h e  change i n  t h e  load-carrying capaci ty 

of t h e  p i l e s  due t o  l a t e r a l  movement of t h e  i n t e g r a l  abutment? 

Are t h e  p i l i n g  s t r e s s e s  due t o  t h e  l a t e r a l  movement ca lcula ted?  

Please  exp la in  t h e  method(s) you use.  

2 .  How do you determine what maximum leng th  t o  use f o r  br idges  with 

i n t e g r a l  abutments? 

3 .  Do you have a  des ign  manual o r  design example f o r  i n t e g r a l  abut- 

ment br idges  t h a t  we could stpdy? ( I f  so ,  we would apprec ia te  

rece iv ing  one copy.) 

4 .  Please  inc lude  any o the r  information you have concerning t h e  

a n a l y s i s  and des ign  of i n t e g r a l  abutment br idges  i n  your s t a t e .  

P l ease  no te  t h a t  t h e  i n t e n t  of t h e  survey 
i s  t o  document cu r ren t  procedures and not  
t o  c r i t i c i z e  any one method. I f  any i n f o r -  
mation p e r t a i n i n g  t o  design examples o r  
manuals is wished t o  remain c o n f i d e n t i a l ,  
p l ease  l e t  us know. 

P lease  r e t u r n  t o :  Lowell Greimann 
416 Town Engineering 
Iowa S t a t e  Universi ty 
Ames, Iowa 50011 
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Continued. 
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Design Consideratxon 
Design Assumptions and Details 

C
r
~
t
e
r
i
a
 fa
r
 Maxiolum 

Pilzng Stresses D
u
e
 

Length for Bridges 
to Lateral Movement 

with 
Integral 

Pile 
Pile 

Back 
State 

are Calculated 
Abutments 

Head 
Cap 

Approach Slab 
Fill 

Comments 

Idaho 
Only for those' that 

Based 
upon F'HWA 

guide- 
Hinge 

Rigid 
Expansion joint 

Free drain: 
Assume that passive ear& 

involve some unique 
lines and the state's 

pile 
cap 

specified between 
ing 

pressure at abutments tends 
feature that would 

o
m

 experience 
rigid pavement and 

granular 
t
o
 restrain movement and 

reduce 
warrant such calcu- 

Steel: 
< 200 ft 

approach slab; no 
material 

deflections from 
calculated 

lations 
concrete: 

< 4
0
0
 ft 

Special treatment 
values. 

Skewed three-span 
Prestressed: 

5 400 
ft 

specified for 
steel girder bridge with 

inte- 
flexible pavement 

gral abutment w
as built; 

rotational forces from lateral 
earth presence o

n
 end 

wall 
caused 

failure in pier anchor 
bolts 

o
o

 exterior girder. 

Indiana 
No 

Steel: 
5 --- 

Hinge 
~
m
b
e
d
 

20-ft. approach 
Select 

Only vertical piles 
are used 

Concrete: 
< 
150 ft 

piles 
slab integrally 

granular 
with 

integral abutments. 
When 

Prestressed: 
5 --- 

only 1
 ft 

attached 
to bridge 

fill 
bridge skew > 30°, 

length limit 
into the 

for concrete bridges 
is < 100 ft. 

cap 
Integral abutments have been 
used 

for many years with no 
adverse experiences. 

On longer 
bridges 

the integral connec- 
tion is eliminated, substituting 
a
 neoprene bearing pad 

or expan- 
sion device, use alternating 
vertical and battered piles in 
the c

a
p
 and 

s
t
i
l
l
 neglect 

lateral f
o
r
c
e
s
 on the piles. 

Iowa 
Yes 

Based on an allowable 
Fixed 

Neglect 
Neglect 

bending stress of 55% 
o
f
 yield plus a 30% 

overstress. 
Moment in 

pile found by 
a rigid 

frame analysis consider- 
ing relative' stiffness 
of the s

u
p
e
r
s
t
~
u
c
t
u
r
e
 

and 
the piling. 

Assume 
piles to be 10.5 f

t
 and 

neglect soil resistance. 
Analysis 

showed that 
allowable pile deflection 
was about 3/8 in. 
Steel: 

< --- 
Concrete7 

< 265 ft 
~restressed: 

< 265 ft 

Roadway 
Conservative design. 

fill 
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Continued. 

Design Consideration 
Design Assumptions and Details 

Criteria for Maximum 
Piling Stresses Due 

Length for Bridges 
to Lateral Movement 

with Integral 
Pile 

Pile 
Back 

State 
are Calculated 

Abutments 
Head 

Cap 
Approach Slab 

P
i
l
l
 

Comments 

V
e
m
o
n
t
 

No 
Steel: 

5 150 
ft 

Partially 
Rigid 

Approach slab 
No 

special 
< 30° 

skew 
Concrete: 

< --- 
r
e
s
t
r
a
i
n
e
d
'
 pile cap 

anchored 
to 

treatment 
~
~
e
s
t
r
e
s
s
e
d
?
 -< --- 

or fixed 
abutment 

Washington 
No 

Mainly based o
n
 p
a
s
t
 

Hinge 
Designed 

Approach slab 
Granular 

--- 
expeiience 

a
s
 
c
r
o
s
s
 

attached 
to abut- 

backfill, 
Steel: 

--- 
beam 

o
n
 

ment with allow- 
. 

earth pres- 
Concrete: 

C
 400 

ft 
simple 

a
n
c
e
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300 
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restrained 

cap 
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11. TABLES 



Table  2 .1 .  Design r e s t r a i n i n g  fo rces .  

Abutment Type Design Longit.  Force (Service Level) 

End Diaphragm on Cast  I n  D r i l l e d  Hole P i l e s  "25 k ips  pe r  p i l e  

End Diaphgram on Concrete Driven P i l e s  "20 k ips  per  p i l e  

End Diaphragm on 45-Ton S t e e l  P i l e s  "15 k ips  pe r  p i l e  

End Diaphragm on Neoprene S t r i p  o r  Pads 15% of dead load 

End Diaphragm on R o l l e r s  5% of dead load 

6 
These va lues  a r e  f o r  t h e  des ign  of end diaphragm only .  



Table 3.1. Flow chart for determining the reversal values 
of loading and unloading. 

= THE CONVERGED STRAIN OF THE PREVIOUS INCREMENT i, 

i = THE CONVERGED STRESS OF THE PREVIOUS INCREMENT i, 

€c,i = THE REVERSAL STRAlW OF THE PREVIOUS INCREMENT i, 

Oc,i = THE REVERSAL STRESS OF THE PREVIOUS INCREENT i, 

~ i + l j  = THE UPDATEB STRAIN OF THE CURRENT INCREMENT 1+1, 

o i + l j  = THE UPDATED STRESS OF THE CURRENT INCR~ENT i+l, 

%,i+l = THE UPDATED REVERSAL STRAIN OF THE CUWENT INCREMENT i+l 

O c , i + l  = THE UPDATED REVERSAL STRESS OF THE CUWENT INCREMENT i+l, 



Table 3 .2 .  Parameters f o r  p-y curve. 

Case n p  (use l e s s e r  value)  
u kh 

S o f t  c l a y  1.0 pU = 9cuB 
( S t a t i c  load)  

S t i f f  c l a y  1 .0  pU = 9cUB 
( S t a t i c  load)  

Very s t i f f  c l a y  2 .0  pU = 9cUB 
( S t a t i c  load)  

Pu - 
u  "50 

Sand 
( S t a t i c  load)  

Note: For no ta t ions  r e f e r  t o  Table 3 .3 .  



Table 3.3. Soil parameters for Table 3.2 .  

Parameter Evaluation 

'50 
From laboratory triaxial test, or use 
= 0.02 for soft clay 
= 0.01 for stiff clay 
= 0.005 for very stiff clay 
(Axial strain at 0.5 times peak stress difference) 

c Undrained cohesion indicated for an unconsolidated, u undrained laboratory test 

B Pile width 

Y Effective unit soil weight 

x Depth from soil surface 

@ Angle of internal friction 

01 = for dense or medium sand 2 

= 9 for loose sand 3 

J = 200 for loose sand 

= 600 for medium sand 

= 1500 for dense sand 

'50 
Displacement at one-half ultimate soil reaction 

= 2.5  BE^^ for soft and stiff clay 
= 2.0 Bcs0 for very stiff clay 
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Table 3.4. Parameters f o r  f - z  curve. 

Case n f max kv 
H P i l e s  Others  

Clay 1 .0  The l e a s t  o f :  The l e s s e r  o f :  lOf,ax 
( S t a t i c  load)  z c 

2(dcu+bfca) 

Sand 1.0 0.02N(2(d+2bf)) 0.04Na ( k l f )  lofmax 
( S t a t i c  load)  'i3 

( k l f  zc 

a = Shear s t r e n g t h  reduct ion  f a c t o r  '(see F ig .  3 .6)  

c = Undrained cohesion of t h e  c l ay  s o i l  
U 

= 97.ON + 114.0 ( p s f )  

c =Adhes ion  between s o i l  and p i l e  
a 

- - acu  ( p s f )  

N = Average s tandard  pene t r a t ion  blow count 

z = Rela t ive  displacement required t o  develop fmax 
C 

= 0.4  i n .  (0.033 f t )  f o r  sand 

= 0.25 i n .  (0.021 f t )  f o r  c l ay  

!L = Gross per imeter  of t h e  p i l e  ( f t )  
g 

d = Sec t ion  depth of H p i l e  o r  diameter  of p ipe  p i l e  ( f t )  

bf = ~ l ' a n ~ e  width of H p i l e  ( f t )  



Table 3.5. Parameters for q-z curve. 

Case n %ax 
k 
9 

Clay 
(Static case) 

Sand 
(Static case) 

Ncorr 
= Corrected standard penetration test (SPT) blow count at depth 
of pile tip 

= N (uncorrected) if N - < 15 

= 15 + 0.5(N-15) if N > 15 

c = Undrained cohesion of the clay soil u 

= 97.ON + 114.0 (psf) 

z = Relative displacement required to develop qmax 
C 

= 0.4 in. (0.033 ft) for sand 

= 0.25 in. (0.021 ft) for clay 

N = Average standard penetration blow count 



Table 3.6. Soil properties and cur"? paranetrrs for loose  sand 

Range o f  Values 
Typical 

Lower Bound Upper Bound Value 

S a i l  Propert ies:  

Blow count,  N 4 10 5 

Unit weight ,  y (pc f )  90 125 110 

Angle o f  f r i c t i o n ,  t$ 28O 30' 30° 

p-y Curve Parameters: 

0.10x2 + 0.22Bx 2 
0.16~ t 0.33Bx 0. 14x2 + 0.29Bx 

f o r  x 2 218 f o r  x 5 238 f o r  x 2 23B 
2.3Bx 4.OBx 3.5Bx 

f o r  x 7 218 f o r  x > 23B f o r  x > 238 

13x 19% 16x 

f - z  Curve Parameters: 

D 1.0 

fmax &If)* 0.4 

kV (ksf)* 120 

q-z Curve Parameters: 

* 
These values  are f o r  a HPlOX42 p i l e .  

B = p i l e  width ( f t ) .  

x = depth from s o i l  surface  ( f t ) .  





Table 3.8. Soil properties and curve parameters for dense sand. 

Range of Values 

Lower Bound Upper Bound 
Typical 
Value 

Soil Properties: 

Blow count, N 

Unit weight, y (pcf) 

Angle of friction, + 

p-y Curve Parameters: 

n 

Pu (klf) 
2 0.28~ + 0.38Bx 

for x 5 21B 
2 0.55~ + 0.61Bx 

for x 5 27B 
2 0.51~ t 0.57Bx 

for x 5 27B 

6.4Bx 
far x > 21B 

15Bx 
for x > 27B 

14Bx 
for x > 278 

f-z Curve Parameters: 

n 

q-z Curve Parameters: 

Q 
These values are for a HP10X42 pile. 



Table 3 .9 .  Soil properties and curve parameters for soft clay. 

Range of Values 

Lower Bound Upper Bound 
Typical 
Value 

Soil Properties: 

Blow count, N 

Unit weight, y (pcf) 

Undrained cohesion, 
CU (psf) 

p-y Curve Parameters: 

n 

P (klf) 
(Bse lesser value) 

k, (ksf) 
(use lesser value) 

73 or. 
24+2x+4.1x/B 

f-z Curve Parameters: 

q-z Curve Parameters: 

t, 

ri 
These values are for a HPlOX42 pile 



Table 3.10. Soil properties and curve parameters for stiff clay. 

Range of Values - 
Lower Bound Upper Bound 

Typical 
Value 

Soil Properties: 

Blow count, N 5 

Uhit weight, y (pcf) 115 

Undrained cohesion, 
CU (psf) 1500 

p-y Curve Parameters: 

P (klff 
(tse lesser value) 

540 or 
bsbksd:ser value) 180+4.6x+30xLB 

f - z  Curve Parameters: 

'max (klff* 

k" (ksf)* 

q-z Curve Parameters: 

* 
These values are for a HPlOx42 pile. 



Table 3.11. Soil properties and curve parameters for very stiff clay. 

Range of Values 

Lower Bound Upper Bound 
Typical 
Value 

Soil Properties: 

Blow count, N 18 SO 

Unit weight, y (pcf) 120 140 

Undrained cohesion, 
cU (psf) 3000 

p-y Curve Parameters: 

pU (klf) 278 or 54B or 458 or 
(use lesser value) 9BtO.12Bxt6x 18B+O.l4Bx+12x 15B+O.l3Bx+10x 

kh (ksf) 
(use lesser value) 

f-7. Curve Parameters: 

q-z Curve Parameters: 

n 1.0 1.0 

(ksf) 27 54 

k (kcf) 
q 

13,000 26,000 

* 
These values are for a HPlOX42 pile. 



166 

Table 4 .1 .  S o i l  c h a r a c t e r i s t i c s .  

Avg. Undrained 
E 

P i e r  S i t e  S o i l  To ta l  Unit Shear S t r s n g t h  50 Depth 
No. No. Type Wt . - - lbs / f t  l b s / f t  % f t  

1 A Sandy 130 
Clay 
(CL - 
CH) 

2 B Sandv 130 



Table 4 : 2 .  Modulus of e l a s t i c i t y  f o r  t imber p i l e s .  

Tes t  S i t e  P i l e  Average Modulus of E l a s t i c i t y ,  E (ks i )  

9- 
Assumed, a s  no c a l i b r a t i o n  t e s t  was made on t h i s  p i l e .  



Table 5.1. S o i l  p r o p e r t i e s  used t o  check t h e  l a t e r a l  mechanism (see 
Chapter 3 f o r  no ta t ion ) .  

S o i l  Types 

Very s t i f f  c l ay  15.6 3.75 20.06 2.0 1.0 

S o f t  c l a y  0.5 0.24 4.10 1.0 1 .0  

115 S o f t  c l ay  0 . 1  0.05 0.82 1.0 1.0 

Dense sand 0 . 0 8 4 0 ~  0 . 0 1 0 4 ~  - 3.0 1.0 

Loose sand 0 . 0 0 9 5 ~  0 . 0 0 5 8 ~  - 3.0 1.0 

1/5 Loose sand 0 . 0 0 1 9 ~  0 . 0 0 1 2 ~  - 3.0 1.0 



Table 5.2. Tabulated values for the plastic mechanism load V the 
P' 

elastic buckling load Vcr, and the ultimate load from 

finite element results V . u 

Soil Types v v 
C r V (k) u 

(k;) (k) (finite 
element) 

e = 1" 
(see Fig. 5.12(a)) 

very stiff clay 

soft clay 

115 soft clay 
. - - - - - - - - - 

very stiff clay 

soft clay 

e = 2" 115 soft clay 384.8 909 285 
(Fig. 5.12(a)) 

dense sand 384.8 5260 441 

loose sand 384.8 2201 415 

115 loose sand 384.8 1156 373 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
e = 2" very stiff clay 384.8 18787 478 
(wlvertical 
springs) soft clay 384.8 3370 421 

(Fig. 5.12(b)) . 
115 soft clay 384.8 1504 320 



Table 5.3. Tabulated va lues  f o r  t h e  p l a s t i c  mechanism load  V D ,  t h e  
x 

e l a s t i c  buckling load Vcr ,  and t h e  u l t i m a t e  load V f o r  
combined loading.  u  

S o i l  Types V V 
c r  VU(k) 

(k? (k) ( f i n i t e  
element) 

very s t i f f  c l ay  539.6 11352 580 

% =  1 i n .  s o f t  c l ay  539.6 2036 537 
( see  Fig .  5.25) 

115 s o f t  c l a y  539.6 909 437 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

very s t i f f  c l ay  480.5 11352 564 

s o f t  c l a y  480.5 2036 483 

ah = 2 i n .  115 s o f t  c l ay  480.5 909 357 
( s e e  F ig .  5.25) 

dense sand 480.5 5260 590 

loose  sand 480.5 2201 548 

115 loose  sand 

41 = 2 i n .  very s t i f f  c l ay  
( see  F ig .  5.25 
w/f ixed s o f t  c l ay  
p i l e  head) 

115 s o f t  c l ay  

ah = 2 i n .  very  s t i f f  c lay  
( w l v e r t i c a l  
s p r i n g s ,  no s o f t  c l a y  
suppor t  a t  
p i l e  t i p )  115 s o f t  c l ay  



Table 6 .1 .  Mater ia l  p rope r t i e s  o f  t imber and concrete p i l e s .  

P i l e s  Modulus of E l a s t i c i t y  Yield S t r e s s  
k s i  k s i  

Douglas f i r  timber p i l e  

Concrete p i l e  



12.  FIGURES 



MOVEMENT REQUIRED (INCHES) 

Fig. 2.1. Effective structure length versus movement required 
for cold climate conditions. 



APPROACH SLAB t .  14' MIN.4 
1 .  

Fig. 2 . 2 .  Approach s lab d e t a i l  (FHWA) 



Y J  

Fig. 3.1. Typical soil resistance-displacement curve. 

y u 
Y 

Fig. 3.2. Typical p-y curve with Ramberg-Osgood constants. 



YIY, 

Fig. 3.3. Nondimensional form of the modified Ramberg-Osgood equation. 



Fig. 3.4. Hysteresis loops in accordance with modified Ramberg-Osgood 
cyclic model with n = 1.0. 



PATH 1: (Ecli+l = €c,i 
"c, i+l  = "c,i 

= E j  
PATH 2: 

= "3 

Fig. 3.5. The determination of reversal values for loading and 
unloading. 



Figure 3 .6 .  Reduction fac tor  a [3.11].  



Y 

. . 
ATERAL SPRING 

IN Y DIRECTION 

z 

LATERAL SPRING 
IN. Z DIRECTION 

VERTICAL SPRING 

Fig. 4.1. A combination of a one-dimensional idealization for the 
piles and an equivalent nonlinear spring idealization for 
the soil. 





Fig. 4.3. Coordinate systems and nomenclature. 



D7 "10 

-C-- 

* X  

z 
Fig .  4.4.(a). Three-dimensional beam-column element, global degrees 

of freedom. 

Y 
4 

Y 

* X 

7 
L 

Fig.  4.4.(b). Three-dimensional beam-column element, element 
(local) degrees of freedom. 





Fig. 4 , 6 ( a ) .  Element layering for two-dimensional analysis. 
(b). Element layering for three-dimensional analysis. 



Fig. 4.7. The rate of change of the transformation matrix with 
respect to the nodal displacements {dl. 



Fig. 4.8. The coordinate updating of K node in three-dimensional 
beam-column element'. 



Fig. 4.9. External and internal forces and displacements acting 
on the pile element. 



LATERAL SPRINGS 
I N  y AND z DIRECTION 

z z 

(a 

P 

Fig. 4 . 10  ( a ) .  Idealized backwall s o i l  model i n  integral  
bridge abutments. 

(b ) .  p-y curve for  backwall s o i l  model i n  
element y direct ion.  



( INCREMENTAL 
LOAD) 

d 

I--- ~ d d  ( INCREMENTAL DISPLACEMENT) 

Fig. 4.11. Piecewise linear solution for a single degree-of-freedom 
system. 



Fig. 4.12. Characteristics of Newton-Raphson iteration in a simple 
one-degree-of-freedom. 



Fig. 4.13. Increment-iteration or mixed procedure in a multi-degree- 
of-freedom structure (Newton-Raphson solution of the 
equation F = f (D) ) . 
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R = 100.0 I N .  
v = 0.0 
E = 107 p s i  

INEAR SOLUTION 

LARGE DISPLACEMENT RESPONSE 
6 0  EQUAL LOAD STEPS 
8 B E A M  ELEMENTS 

16 THREE-DIMENSIONAL ELEMENTS 

U 
, - - R  

PR* LOAD PARAMETER k = -gj- 

Fig. 4.15. Three-dimensional large deflection analysis of a 45O 
circular bend. 



Y ,  IN. 

30 - P = 300 1b 

A(59.2, 40.1, 22.7) 
20 - 

DEFORMED 
CONFIGURATION 

X, IN. 

A (70.7, 0.0, 29.3) 
Z,  IN. 

Fig. 4.16. Deformed configurationof a 45O circular bend. 



------ Y 

z 

SOIL PROPERTIES: 
p-y CURVE 

kyt = k Z t  = 8.333 KSI 
n = 3.0 

p u  = 16.666 KPI 

Fig. 4.17. HP14x73 pile used to check soil response. 



Fig. 4.18. S o i l  response f o r  c y c l i c  loads in  Y. Z directions.  



Fig. 4.19. S o i l  response f o r  c y c l i c  loads  i n  YZ d i r e c t i o n .  



I 

Fig. 4.20. Load-deflection characteristics of snap-through problem. 



Fig. 4.21. Load-deflection characteristics of toggle. 





Fig.  4.23. Force i n  p i l e  as  a func t ion  of depth. 

45 
a HP 14x89 

- o HP 14x117 
I I I I I I 

0 100 200 300 400 500 600 
FORCE, KIPS 



TIP DISPLACEMENT, IN. 

Fig. 4.24. Relationship between tip movement and load. 



PIP 14 x 117 
EXPERIMENT RESULTS - - - NUMERICAL RESULTS 

A ,  IN. 

Fig. 4.25. Load-settlement curve for HP14x117 test pile. 



A ,  IN. 

Fig .  4.25. continued. 







DEFLECTION AT GROUNDLINE, A,,, IN. 

Fig. 4.28. Load-deflection curve for piles I-A and 1-B. 



DEFLECTIONS AT GROUNDLINE, A h ,  ( INCHES) 

Fig .  4.29. Load-deflection curve f o r  p i l e s  2-A and 2-B. 



MOMENT, K - I N .  

Fig.  4.30. Moment ve r sus  depth  diagram f o r  p i l e  I-A. 



CAP 
JACK 

MOT TO SCALE 

Fig. 4 . 3 1 .  Schematic diagram of the p i l e  and generalized 
s o i l  prof i le .  



SETTLEMENT, A,, I N .  LATERAL MOVEMENT, A h ,  I N .  

Fig. 4 . 3 2 .  Load versus settlement for the axial load test. 



Fig. 4.33. Lateral load versus displacement for the combined 
load test (with a 60-kip axial load). 



H.Ah- - 

LATERAL 
&SPRINGS 

POINT 

CURVATURE 

Fig. 5.1. Design model: (a) model of soil-pile system. 
(b) elastic,perfectly plastic moment-curvature 
relationship for the pile, (c) bilinear soil 
resistance-displacement relationships for the 
soil springs. 



Fig. 5.2. Axial load-displacement curve for the design model. 

I *  Iff{/ END BEARING 

Fig. 5.3. (a) Vertical load on the pile is carried by skin 
friction and end bearing, (b) Element of pile under 
axial loading. 



Fig. 5.4. Coefficients r and s versus L', for use in axial stiffness 
equations. 



PERFECTLY ELASTIC CASE 

CURVATURE 

RIGID, PERFECTLY PLASTIC CASE 

Fig. 5.5. Example illustrating lateral mechanism: (a) schematic 
drawing of the pile and soil, (b) material properties, 
(c) failure modes. 



PERFECTLY ELASTIC  CASE 
(BEAM COLUMN) 

R I G I D ,  PERFECTLY PLASTIC  CASE 

vph PERFECTLY ELASTIC  

Fig. 5.5. Example illustrating lateral mechanism (con't): (d) 
load-displacement curves for each case, (e) load- 
displacement curves for the pile. 

vu 
/"--- ,---. R I G I D , P E R F E C T L y  PLASTIC 

.-- ACTUAL 



ASSUMED - VARIATION 

Fig .  5.6. Design model used f o r  c a l c u l a t i n g  t h e  e l a s t i c  buckl ing  
load: (a) p i l e  wi th  cons tant  a x i a l  load ,  (b) p i l e  w i th  
v e r t i c a l  load t r a n s f e r ,  ( c )  v a r i a t i o n  of a x i a l  load  
wi th  depth. Note: l a t e r a l  s o i l  support i s  not  shown. 



f = FREE 
p = PINNED 

ft = FIXED, TRANSLATION 

NOTE: UPPER END CONDITION 
LISTED FIRST 

Fig. 5.7.  Nondimensional buckling c o e f f i c i e n t  versus  l eng th  
f o r  cons tant  kh [ 5 . 5 ]  (see Fig. 5.9 f o r  boundary 
condi t ions) .  



Fig. 

3.0 

2.0 

I \ 

b' p-p f p = = PINNED FREE 

ft = FIXED, TRANSLATING 

V '  

NOTE: UPPER END CONDITION 
LISTED FIRST 

1.0 

Zmax = L/T 

0.0 
0 1 2 3 4 5 6 

Zmax 

5.8. Nondimensional coefficients versus length for linearly 
varying kh K5.51 (see Fig. 5.9 for boundary conditions) 



Fig. 5.9. Boundary conditions fo r  e l a s t i c  buckling load Vcr. 
For a l l  cases the  lower boundary condition i s  
pinned. The upper boundary condition f o r  each case i s  
(a) f r ee ,  (b) pinned, (c) fixed, no t ranslat ion,  
(d) f ixed,  t ransla t ing.  



Fig. 5.10. Effect of skin friction on the buckling load for (a) 
constant lateral soil stiffness, (b) linearly varying 
lateral soil stiffness C5.6, 5.71 (see Fig. 5.9 for boundary 
conditions). 



150 

125 

FINITE ELEMENT RESULTS 
100 ---- v DESIGN METHOD RESULTS 

( k )  75 SOIL PARAMETERS 

50 fmax = 0.32 k/IN. 

2 5 

0 
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 

A, (INCHES) 

Fig. 5.11. Load-displacement curve for 40-it-long HP10x42 
pile in stiff clay illustrating the slip mechanism. 

Fig. 5.12. Diagram of pile configurations used to illustrate 
the lateral mechanism. 



A,,, IN. 

Fig. 5.13. Load-displacement curves for the pile 
configuration shown in Fig. 5.12(b). 



Fig. 5.14. Comparison of Rankine equation and finite element 
results for various soils. 
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Fig. 5.15. Nondimensional coefficients versus hax for constant kh. 
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Fig. 5.16. Nondimensional coefficients versus zmax for linearly 
varying kh. 
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Fig. 5.17. L a t e r a l  f a i l u r e  modes and assumed s o i l  r e a c t i o n  and 
bending moment d i s t r i b u t i o n s  f o r  free-headed p i l e s :  
(a )  s o i l  f a i l u r e  (b) p i l e  f a i l u r e  15.15, 5.161. 
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Fig .  5.18. L a t e r a l  f a i l u r e  modes and assumed s o i l  r e a c t i o n  and 
bending moment d i s t r i b u t i o n s  f o r  fixed-headed p i l e s :  
(a)  s o i l  f a i l u r e  (b) s o i l  and p i l e  f a i l u r e ;  (c) 
p i l e  f a i l u r e  [5.15, 5.161 
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- FINITE ELEMENT RESULTS ---- DESIGN METHOD RESULTS 
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5.19. Lateral load-displacement curves for pile failure 
modes with constant pU. 
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Fig. 5.20. Lateral load-displacement curves for pile failure 
modes with linearly varying pU. 
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Fig. 5.21. Load-displacement curves representing (a) soil and 
pile failure mode, (b) soil failure mode for free- 
headed pile (constant p,). 
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Fig. 5.22. Load-displacement curve representing the soil failure 
mode for a fixed-headed pile (constant pU). 
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Fig. 5.23. Load-displacement curves representing (a) soil and 

pile failure mode, (b) soil failure mode for a free- 
headed pile (linearly varying p,). 
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Fig. 5.24. Load-displacement curve representing the soil failure 
mode for a fixed-headed pile (linearly varying p,). 



Fig. 5.25. Example of a pile with a lateral displacement and 
vertical load at the pile head. 

2 3 4 5 6 7 8 
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Fig. 5.26. Comparison of elastic buckling loads for piles with 
different Ah values. 



Fig .  5.27. Development of c o l l a p s e  mechanism assuming r i g i d ,  
t 

p e r f e c t l y  p l a s t i c  behavior .  
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Fig. 5 .28 .  Comparison of Rankine equation and f i n i t e  element 
resul t s .  



Fig.  6 . 1 .  P i l e  deflected shapes (a) a f t e r  a spec i f i ed  displacement 
Ah ( s o l i d  l i n e ) ,  (b) applied v e r t i c a l  load V i n  case  (a) 
(dashed l i n e ) .  



A", IN. 

Fig. 6 . 2 .  Vertical load-settlement curves with specified lateral displace- 
ments, 41 (0. 1, 2 ,  3 ,  4 in . )  for very s t i f f  clay (frict ion p i l e ) .  
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Fig, 6.6(a). Nondimensional forms of ultimate vertical load ratio 

versus specified lateral displacements Ah, in Iowa 
soils (end-bearing pile). 

. . 
. . .  

- FINITE ELEMENT AND DESIGN METHOD 

- 

- S I X  IOWA SOILS 

- 

I I I 
0.0 1.0 2.. 0 3.0 4.0 

A h ,  IN. 
Fig. 6.5. Nondimensional forms of ultimate vertical load' ratio 

versus specified lateral displacements Ah, in Iowa soils 
. . (friction pile). 
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Fig. 6.6.(b). Nondimensional forms of ultimate vertical load ratio 
versus specified lateral displacements Ah, in Iowa 
soils (end-bearing pile). 



Fig. 6.7(a). Idealized moment-curvature relation and path for 
noncyclic model. 

Fig. 6.7(b). Idealized moment-curvature relation and path for 
cyclic model. 
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Fig. 6.9. Nondimensional forms of ultimate vertical load ratio. 
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$ ABUT. 

Fig .  6.12. Sec t ion  through abutment. 
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(b) EQUIVALENT CROSS-SECTIONAL PROPERTIES 

Fig. 6.13. Mathematical model of the State Avenue bridge and equivalent 
cross-sectional properties. 
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Fig. 6.14. Section through abutment and soil profile. 
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Fig. 6.18. Pile orientations in the integral abutment on 
skewed bridge. 
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Fig. 6.19. Ultimate v e r t i c a l  load r a t i o  ( f r i c t i o n  p i l e s  
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Fig. 6.20(a) ' .  Ultimate v e r t i c a l  load r a t i o  (end-bearing p l l e s  

about s t rong  a x i s ) .  
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Fig. 6.20.(b) Ultimate vertical load ratio (end-bearing pile 

about strong axis). 



Fig. 6.21. Load-settlement curve for soft clay, stiff clay, and very 
stiff clay (end-bearing piles with fixed pile heads bending 
about strong axis). 
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Fig. 6.22. Ultimate vertical load ratio (end-bearing piles about 45' 
axis) in Iowa soils. 
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Fig. 6.25. Load-settlement curve for all pile orientations. 




